Daftar ir anorganik

  • 447 views
Uploaded on

List of inorganic compounds Infrared Spectrum

List of inorganic compounds Infrared Spectrum

More in: Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
447
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
3
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Infrared Spectra and Characteristic Frequencies of Inorganic Ions Their Use in Qualitative Analysis FOIL A. MILLER AND CHARLES H. WILKINS Department of Research in Chemical Physics, Mellon Institute, Pittsburgh 13, Pa. Polyatomic ions exhibit characteristic infrared spec- A brief classification of the various types of vibrations in tra. Although such spectra are potentially useful, crystals may be appropriate. Ionic solids are considered fiist. there is very little reference to them in the recent In a crystal composed solely of monatomic ions, such as sodium literature. In particular, the literature contains no chloride, potassium bromide, and calcium fluoride, the only extensive collection of infrared spectra of pure in- vibrations are “lattice” vibrations, in which the individual ions organic salts obtained with a modern spectrometer. undergo translatory oscillations. The resulting spectral bands are In order to investigate the possible utility of such broad and are responsible for the long wave-length cutoff in data, the infrared spectra of 159 pure inorganic transmission. I n a crystal containing polyatomic ions, such as compounds (principally salts of polyatomic ions) calcium carbonate or ammonium chloride, the lattice vibrations have been obtained and are presented here in both also include rotatory oscillations. Of greater interest in this graphical and tabular form. A table of character- case, however, is the existence of “internal” vibrations. These istic frequencies for 33 polyatomic ions is given. are essentially the distortions of molecules whose centers of mass These characteristic frequencies are shown to be and principal axes of rotation are a t rest. The internal vibrations useful in the qualitative analysis of inorganic un- are characteristic of each particular kind of ion. knowns. Still more fruitful is a combination of I n molecular solids, such as benzene, phosphorus, and ice, the emission analysis, infrared examination, and x-ray units are uncharged molecules held in the lattice by weak forces diffraction, in that order. Several actual examples of the van der Waals type, andoften also by hydrogen bonds. The are given. It is evident that a number of problems same classification into internal and lattice modes can be made. involving inorganic salts containing polyatomic ions A few examples of such solids are represented in this paper (boric will benefit by infrared study. The chief limitation acid, and possibly the oxides of arsenic and antimony). at present is the practical necessity of working with Finally there are the covalent solids, such as diamond and powders, which makes it difficult to put the spectra quartz, in which the entire lattice is held together by covalent on a quantitative basis. bonds. Here the distinction between lattice and internal vibra- tions disappears. One might a t first expect an ill-defined and featureless spectrum, but such is not the case. Actually thereA LTHOUGH there has been a vast amount of work on the Raman spectra of inorganic salts ( 2 , 4 ) , the study of themin the infrared has been relatively neglected. Schaefer and Mat- are bands that are very Characteristic. The situation is in some ways analogous to that in a polymer, which in spite of itsossi (10) have reviewed work done up to 1930, most of which deals size and complexity possesses a remarkably discrete spectrum.with reflection spectra. The most extensive surveys of infrared Silica gel is the only representative of this type included here.absorption spectra have been made by Lecomte and his coiTorkers EXPERIMENTAL(6, 7 ) , but unfortunately many of their data are somewhat outof date and are not always presented in the most useful form. Origin and Preparation of Samples. Practically all the samplesReferences to studies on a few ions are given in the books by Wu were commercial products of C.P. or analytical reagent grade.(12) and by Herzberg ( 3 ) . There has recently been renewed The samples were gound to a fine powder to minimize the scatter-interest in the detailed study of the infrared spectra of selected ing of light, and were examined as Sujol mulls. When there weresalts, as exemplified by the papers of Halford ( 8 ) , Hornig ( I I ) , spectral features that were obscured by the Sujol bands, theand their coworkers. The well known Colthup chart ( 1 ) con- samples were either run as a dry powder or mulled in fluorolube (atains characteristic frequencies for nitrate, sulfate, carbonate, mixture of completely fluorinated hydrocarbons. Fluorolube isphosphate, and ammonium ions. An excellent recent paper by a product of the Hooker Electrochemical Co., perfluoro lube oilHunt, Kisherd, and Bonham ( 5 ) contains the spectra of 64 of E. I. du Pont de Semours & Co.). Some compounds, suchnaturally occurring minerals and related inorganic compounds. as ferric nitrate nonahydrate (No. 49) and calcium permanganate Aside from sixteen spectra in this latter paper, there is in the tetrahydrate ( S o . l50),seemed to mull up in their own water ofliterature no compilation of infrared spectra of inorganic salts hydration. When the fine powder x a s rubbed between saltobtained with a modern spectrometer. I t therefore seemed worth plates, it acquired the appearance and feel of a typical mull, butwhile to make a fairly extensive survey to seek answers to the fol- no appreciable fogging of the salt plates resulted. For other com-lowing questions: Is it generally possible to obtain good spectra? pounds, such as potassium carbonate, breathing on the sampleDo the ions possess frequencies which are sufficiently characteris- achieved the same result. This is not recommended, however,tic to be useful for analytical purposes? What is the effect on for it varies the water content unnecessarily, and with potas-the vibrational frequencies of varying the positive ion? Is sium carbonate some of the bands are shifted.infrared spectroscopy useful in the analysis of salts? Although these techniques are satisfactory for qualitative This paper presents the spectra from 2 to 16 microns of 159 examination, it may be of interest t o list some other methodspure inorganic compounds, most of which are salts containing which have been mentioned in the literature for handling inor-polyatomic ions. A chart of characteristic frequencies for 33 such ganic solids. Lecomte, who introduced most of them, has pointedions is given. The use of these data for the qualitative analysis out that a finely ground dry powder scatters very little radiationof inorganic mixtures is demonstrated. Finally, a number of of wave length greater than 6 microns and consequently it mayinteresting or puzzling features of the spectra are described. be used directly in that region (6, 7 ) . He also suggests coating 1253
  • 2. 1254 ANALYTICAL CHEMISTRY Table I. Index to Infrared Curves and Tables of Data Formula No. Type Formula No. Boron Sulfur (Contd.) hletaborate 1 Sulfate 2 3 Tetraborate 4 5 6 Perborate 7 Misc. 8 Bisulfate 9 Carbon Carbonate L1&03 10 Thiosulfate NazCOz 11 KzCOa 12 3hfgCOs hlg(OH)n.3HzO 13 CaCOa 14 BaCOa 15 coco3 16 Metabisulfite 103 PbCOa 17 104 Bicarbonate SHiHCOa 18 Persulfate 105 NaHCOa 19 106 KHCOa 20 Selenium Selenite NazSeOa 107 Cyanide NaCN 21 CuSeOa, 2H20 108 KCY 22 Selenate (NHhSeOi 109 Cyanate KOCX 23 NazSeOi. lOHzO 110 AgOCN 24 KzSeOh 111 CuSeOl. 5HzO 112 Thiocyanate NHISCN NaSCN Chlorate NaC108 113 KSCN KClOa 114 Ba(SCN)z. 2Hz0 Ba(Cl0s)z.Hz0 115 Hg(SCS)z Pb(SCN)z Perchlorate NHiClOi 116 Silicon SaClOa, H20 117 Metasilicate 31 KClOa 118 32 Mg(CIO*)z 119 Bromine Silicofluoride NazSiFs 33 Bromate NaBrOa 120 Silica gel SiOr , XHZO 34 KBr03 121 AgBrOa 122 Sitrogen Iodine Nitrite Nah-02 36 Iodate 123 KNO? 36 124 AgNOz 37 125 Ba(SOz!z Hz0 38 Periodate KIOi 126 Nitrate 39 40 Vanadium 41 Metavanadate 127 42 128 43 Chromium 44 Chromate (NHl)zCrOa 129 45 NazCrOi 130 46 KzCrOa 131 47 MgCrO4.7HzO 132 48 BaCrOb 133 49 ZnCrOa, 7HzO 134 PbCrOa 135 Subnitrate BiOSOz.Hz0 50 Alr(CrOd8 136 Phosphorus Dichromate (NH4)zCrzOi 137 Phosphate, tribasic 51 NazCrtO~. 2H20 138 52 KzCrrOr 139 53 CaCrzOl.3HzO 140 54 CuCrzOr ,2Hz0 141 55 Molybdenum 56 Molybdate NazMoOi, 2HzO 142 67 Kd~foOi.5HnO 143 58 59 Heptamolybdate (~Hdahfo7O24.4HzO 144 Phosphate, dibasic (NHdzHPOi 60 Tungsten hazHPOi.12HzO 61 Tungstate NanWOi.2HzO 145 KiHPOi 62 KzWOI 146 MgHPOi. 3Hz0 63 CaWOi 147 CaHPOa. 2H20 64 Manganese BaHPOi 65 Permanganate NaMn04.3HzO 148 KMnOi 149 66 Ca(MnOi)*.lHzO 150 67 Ba(Mn0h 151 68 Complex ions 69 Ferrocyanide NarFe(CN)a. 10HzO 152 70 KdFe(CN)o.3Hn0 153 ca~Fe(CN)a.12Hz0 154 71 Ferricyanide KaFe(CN)s 155 Orthoarsenate, tribasic Car(.4sOi)z 72 Cobaltinitrite NasCo(N0r)o 156 Orthoarsenate, dibasic NazHAsO4.7HzO 73 PbnHAsOi 74 Hexanitratocerate (NHdzCe(N0ah 157 Orthoarsenate, monobasic KHz.4~04 75 Chlorine Chloride NHhCl 158 Oxide AszO: 76 BaCln. 2Hz0 159 Antimony Mulling agents Nujol, fluorolube 160 Oxide SbzOa 77 Sbzos 78 Sulfur Sulfite (NHI)ZSOSHzO 79 NazSOa 80 KzSOa 2Hz0 81 CaSOa 2Hz0 82 BaSOa 83 ZnSOs 2H20 84
  • 3. V O L U M E 24, NO. 8, A U G U S T 1 9 5 2 1255 Table 11. Positions and Intensities of Infrared Absorption Bandsv w = very weak w = weak m = medium s = strong vs = verystrong s h = shoulder b = broad vb = verybroad s p = sharp imp. = impurity * = KBr region (15-25~) eyaminedC m . - 1 Microns I Cm. -1 Microns I Cm. -1 hficrons I Cm. -1 Microns I 1. Sodium metaborate 9. Boron nitride 20. Potassium bicarbonate 31. Sodium metasilicate NaBOz BN KHCOa NarSiOa. 5Hz0 862 11 60 w 810 12.35 w 705 14.2 s 715 14.0 s 925 10 80 vs, b 1390 7.2 s 833 12.0 s , s p 775 12.9 s 1175 8 50 ni 990 10.1 s 832 12.03 s 1310 7 64 rs 10. Lithium carbonate 1010 9.9 9 980 10.2 YS 1655 6 05 m LipCOp 1370 7.3 m, sh 1125 8.9 m 3470 2 85 YS, vb 864 1 1 . 5 8 in 1410 7.1 vs 1165 8.58 m 1445 6.92 s 1630 6 . 1 5 vs 1695 5.9 m 2. M a nesium metaborate 1490 6.7 s 2380 4.2 w 2330 4.3 m M%Bo~)~.~H~o 2600 3 . 8 5 s , vb 3280 3 . 0 5 vs, vb 11. Sodium carbonate 2950 3.37 m 808 12.4 s NapCOa 32. Potassium metasilicate 838 11.95 m 21. Sodium cyanide KtSiOa 892 11.2 vw 700 14.3 in NaCN (NasCOa impurity) 952 10.5 w 705 14.2 m 770 13.0 vw 1005 9.95 m 855 11.7 v w 865 11.55 m , imp. 990 1 0 . 1 vs, vb 1085 9.2 s 878 11.4 s 1310 7 . 6 5 vw 1625 6.15 vw 1130 8.8 s 1440 6 . 9 5 vs 1460 6 . 8 5 vs,imp. 3330 3.0 m 1220 8.2 w 1755 5.7 m, sp 1640 6.1 m 1370 7 3 s 2500 4.0 m 2080 4.8 s 33. Sodium silicofluoride 1420 1640 3360 7 05 6 1 2 98 s w s 2620 -3000 - 3 . 8 2 vw 3.3 m, vb 2220 3330 4.5 3.0 w, vb m , vb 728 Na2SiFa 13.73 v s m,sh 3500 2 86 s 12. Potassium carbonate 22. Potassium cyanide 790 12.7 KzCOa KCN (KHCOa, K ~ C O S impurities) 1105 9.05 vw 3. Lead metaborate Pb(B0z)n. HzO 865 11.55 m 833 1 2 . 0 m , imp. 34. Silica gel 900 1 1 . 1 vw 11.35 vw, imp. 960 1340 1380 1 0 . 3 s, vb 7.45 m 7.2 Nujol? 1450 -3220 - 6.9 3.1 vs m, vb 882 1440 1635 2070 6 . 9 5 s , imp. 6.12 8 4.83 s 800 948 SiOz. xHzO 12.5 10.55 w w 3280 3.05 m 13. M a nesium carbonate basic 1090 9,l5 vs 3 M g e O ~Mg(OH)n.3H;O . 23. Potassium cyanate 1190 8.4 s,sh 4. Sodium tetraborate 800 1 2 . 5 vw KOCN (KHCOa impurity) 1640 6.1 vw NazBiOi. lOHzO 855 11.7 vw 3330 3.0 m 712 14.05 w 885 11.3 vw 706 14.17 s. imp. 775 12.9 w 1430 7.0 vs 833 12.0 s,rmp. 35. Sodium nitrite 828 12.1 s 1490 6.7 vs 980 10.2 m, !mp. NaNOz 843 10.6 s 3450 2.9 111, vb 1010 9.9 m , imp. . ~~ 1210 8 25 m , sp. 831 12.03 m, s p 1000 10.0 s 1310 7.65 n , s,p. 1250 8.0 vs 1075 9.3 w 14. Calcium carbonate 1335 7.5 m,sh 1130 8.85 m CaCOa 1410 7.1 v s , !mp. 1640 6.1 vs, imp. 1260 7.95 m 715 14.0 w 2130 4.7 s , yb 36. Potassium nitrite 1275 7.85 m 877 11.4 s , s p 2630 3.8 s , imp. KNOz 1360 7.35 vs 1430 7 . 0 vs 1420 7.05 vs 1785 5.6 vw 830 12.05 s , s p 1460 6.85 Nujol? 2530 3.95 vw 24. Silver cyanate 1235 8.1 vs 1650 6.05 m AgOCN 1335 7 . 5 m, sp 3330 3.0 vs 15. Barium carbonate 1210 8 . 2 5 vw 1380 7.25 m BaCOa 1310 7.65 w 2560 3.9 vw 5. Potassium tetraborate 1345 7 . 4 3 vw 3450 2.9 vw K2BiOi. 5Hn0 697 1 4 . 3 5 vi 858 11.65 s , s p 2170 4.6 vs 705 14.2 vw 1440 6 . 9 5 vs 3450 2.9 vw 37. Silver nitrite 782 12.8 vw AgNOz 833 12.0 s 16. Cobaltous carbonate 25. Ammonium thiocyanate 833 12.0 w 918 10.9 s COCOS NHiSCN 848 11.8 v w 1000 10.0 s 1250 8.0 vs 1060 9.45 vw 747 1 3 . 4 vw 1420 7.05 s 865 11.55 m 1650 6 05 m 1380 7.25 vs 1085 1130 1155 1240 9.2 s 8.85 v w 8.65 w 8.05 m 1450 -3330 - 6.9 vs 3 . 0 w , vb 2050 2860 3060 4 88 s 3.5 m 3.27 s 38. Barium nitrite Ba(N0n)z. H20 1315 7 . 6 2 sh 17. Lead carbonate 3149 3.18 s PbCOa 820 12.2 w 1340 7.45 s 1235 8.1 vs 1440 6.95 s 685 14.6 w 26. Sodium thiocyanate 1330 7.53 m 1655 6.05 w NaSCN 1640 6.1 m 840 1 1 . 9 vw 2480 4 03 vw 1410 7.1 YS 758 13 2 w 3360 2.98 m ,sp 3330 3.03 s 950 10 5 vw, b 3510 2.85 m , SP 3390 2.95 s 18. Ammonium bicarbonate 1620 6 18 m 3560 2.81 s NHiHCOi 2020 4 9 8 39. Ammonium nitrate 3330 3 0 ni NHiNOa 6. Manganese tetraborate 703 14.25 s MnBiOi.8HzO 832 12.02 s, sp 830 12.05 w 993 10.08 s 27. Potassium thiocyanate 1340 990 1065 10.1 9 . 4 1 s , vb 1030 1045 9.7 9.58 w, SP w , SP KSCN 13.4 m 1390 1630 ;:i5} 6.13 w 1150 8.7 746 1325 7.55 vs, b 945 10.6 vw, vb 1740 5.75 w 1370 7.3 s 1400 7.15 vs, s p w 1450 6.9 m 1630 6.13 m 1620 6.17 s 2020 4.9 s 1640 6.1 w 1655 6.05 s 3390 2.95 8 3400 2.95 m 1890 5.3 w 3410 2.93 2550 3.92 m 28. Barium thiocyanate 7. Sodium perborate 3060 3.27 VS,SP 40. Sodium nitrate* NaBOs.4HzO 3160 3.17 vs, sp Ba(SCN)z. 2HzO NaNOa 770 13 0 vw 1630 6.15 m 833 12 0 w 19. Sodium bicarbonate 2060 4 . 8 5 vs, s p 836 11.96 m , s p 852 11 75 w NaHCOs 3500 2 . 8 5 vs 1358 7.36 vs 877 11 4 vw 1790 5.59 v w 662 1 5 . 1 5 w (COZ?) 2428 4.12 vw 934 10 7 TS 698 14.35 R 29. Mercuric thiocyanate 1020 9 8 8 838 11.95 Hg(SCN)z 1075 9 3 m 41. Potassium nitrate 1000 10.0 835 1 2 . 0 vw KNOI 1175 8 5 s 1035 9.65 1240 8 05 s 1105 9 . 0 5 vw 1050 9.55 1150 8.7 vw 824 12.14 m, s p 1655 6 05 w 1295 7.73 1380 7 . 2 5 vs 3330 3 0 vs 1370 7.3 s 1410 7.1 1615 6.2 w 1767 5 . 6 6 vw 1460 6.85 2090 4.78 8 8. Boric acid 807 &BO3 12.4 m 1630 1660 1900 E} 5.27 m 5 3450 2.9 w 42. Silver nitrate AgNOa 3 . Lead thiocyanate 0 885 11 3 vw 2040 4.9 vw Pb(SCN)E 733 13.64 vw 1195 8.37 s,sp 2320 4.3 w (COZ?) 1450 6.9 vs 2500 4.0 s. b 2030 4.93 8. sp 803 835 12.45 w 11.98 vw 3270 3.15 s 2940 3.4 2080 4.8 w 1348 7.42 YB
  • 4. 1256 ANALYTICAL CHEMISTRY Table 11. Positions and Intensities of Infrared Absorption Bands (Continued)vw = very weak w = weak m = medium s = strong vs = very strong ah = shoulder b = broad vb = very broad sp = sharp imp. = impurity * = I<Br region (15-25p) examined Cm. - 1 RZicrons I Cm. - 1 Microns I Cm. -1 Microns I Cm.- hlirrons I 43. Calcium nitrate 54. Calcium phosphate, tribasic 63. Magnesium phosphate, dibasic 70. Calcium phosphate monobasic, Ca(N0a)z Caa(P0a)z MgHP04.3H20 Ca(H2POa)z. ~ 2 0 820 1044 1350 1430 12.20 w 9.58 vw 7 4 7.0 s s 962 1030 1085 3230 10.4 v w 9 . 7 YS, vb 9.2 3 . 1 m, b 1 882 1020 1055 1160 11.35 m 9.8 9.5 8 6 s s 8 670 855 885 915 14.9 m, vh ::::} w, r b 10 9 v w , sh 1640 6.1 m 950 10 5 s. h 3450 2.9 s 55. Manganese phosphate, tribasic 1085 9 2 s,b Mns(P0a)z. 7Hz0 1160 8 6 w 44. Strontium nitrate 1235 8 1 s,b 935 10.7 vw, sh 1640 6.1 m Sr(NOdz 980 1020 1040 1070 10.2 9.8 s 9.6 9.35 s w ?sh 35 m 2320 -2980 4.3 - m, vb 3.35 s , v b 1145 8.75 w 71. Sodium metaarsenite 1250 8.00 w NaAsO, 1300 7.7 w 64. Calcium phosphate, dibasic 2470 4.05 vw CaHPOa. 2H20 697 14.36 vs, b 3170 3,l5! 748 13.35 m 880 11.35, m 775 12.9 w,ah 45. Barium nitrate Ba(N0s)t 3330 3450 i:: I 990 1050 10.1 9.5 1 s, r b 833 848 12.0 s, sp 11.8 s , s p 56. Nickel(ous) phosphate, tribasic 1125 8.9 J 1420 7.06 v w 729 13.72 6 , SP 1350 7.4 ? 1460 6.85 m, sp 817 1352 1418 1774 12.24 S , S P 7 . 4 0 vs 7.05 m,sp 5 64 w, SP 735 877 Nia(P0a)~. 13.6 11.4 w 7Hz0 w. vb 1650 -2270 -3000 - 6.07 m - 4.4 3.3 m, vb m 3450 72. 2.90 w , b Calcium orthoarsenate, 2410 4.15 UT, b 943 io 6. w., Rh.~. 3610 2.85 v w , sh tribasic 100.5 9.95 s 46. Cupric nitrate Cu(N0a)z. 3Hz0 1060 -1440 1595 - 9 . 4 5 w, sh 6 . 9 5 w (Sujol 6.27 w ?) + 65. Barium phosphate, dibasic Ca,(AsO4)2 836 11.96 w -3030 3.3 N s BaHPOa 1378 7.26 vs 3450 2.9 m,sp 1587 6.30 6, SP 1790 5 58 v w 57. Copper(icj phosphate, tribasic 2431 4 . 1 1 vw C~a(POa)2.3Hz0 3170 3 15 w 3360 2.98 s, b 645 15.5 m 855 11.7 m 73. Sodium orthoarsenate, dibasic 47. Cobaltous nitrate 925 10.8 s NazHAsOa.7HzO Co(NOa)2.6HzO 960 10.4 s 2440 4.1 w 1010 9.9 s 2700 3.7 w 712 807 12 4 vw, r b 1070 9.35 s 836 836 11 96 w, 6p 1100 9.1 m , sh 1175 1372 7 29 vs 1140 8.75 m 1280 1640 6 1 m 1290 7.75 m 1640 66. Ammonium phosphate 2175 3230 3410 48. 3 1 2.93 s m , sh Lead nitrate 3390 58. 2.95 m Lead phosphate, tribasic Pbs(P0a)z 900 monobasic NHaHzPOa 11.1 w , vb 2380 -3130 - Pb(N0a)z 1080 9.25 m, b 74. Lead orthoarsenate, dibasic 1275 7.85 m PbzHAsOc 726 13.77 u 1420 7.05 w, sh 807 836 1373 12.39 v w 11.96 w, sp 7.28 w 59. Chromic phosphate, tribasic 1440 -1610 -2270 - - 6 . 9 5 rn 6.2 4.4 w, vb w, vb 743 800 13.45 m , b 12.5 vs CrPOa. H?O 2900 3 . 4 5 w, sh 49. Ferric nitrate 3050 3.28 m 75. Potassium orthoarsenate, Fe(NOa)a,9HzO 1030 9.7 vs, vb monobasic 1625 6.15 w KHzAsOa 835 11.98 w 3230 3 . 1 E, b 1361 7 . 3 6 vs 750 13.3 m, b 1613 6.19 m 60. Ammonium phosphate, dibasic 67. Sodium phosphate, monobasic 850 11.75 m, b 1785 5.6 vw (NHa)zHPOc NaH2POa. HzO 1020 9 8 vw, b 2440 4.1 vu. 1266 7.9 m, vb 3230 50. 3 . 1 s , vb Bismuth subnitrate 1585 -2275 -2740 - - 6.3 4.4 3.85 m ,vb m. vb m BiONOa. H20 816 12 27 vw 76. Arsenic trioxide 1325 7.55 s AS?Oa 1380 7.25 vs 1640 6.1 vw 803 1 2 . 4 5 vs 3390 2.95 m, b 1640 6.1 m , vb 840 11.9 w, sh 2850 4 . 2 5 s, b 1040 9 6 vw, b 51. Sodium phosphate, tribasic 2820 3.55 s , b NaaPOa. 12H20 77. Antimony trioxide 694 1 4 . 4 real? Sb2Oa 1000 1 0 . 0 vs 61. Sodium phosphate, dibasic 690 14.5 w 1450 6.9 vw NanHPOa. 12HzO 68.Potassium phosphate 740 monobasic* 1 8 . 5 vs 1660 6.03 m 865 11,55 9 950 1 0 . 5 vw, b 3200 3.13 vs, b KHzPOc 958 1 0 . 4 5 w, sh 985 10.15 S 538 18 59 m52. Potassium phosphate, tribasic 1070 9 . 3 5 17s 900 1 1 . 1 m, vb 78. Antimon pentoxide KaPOi 1125 1090 9.15 m , b Sbr8r 8.9 u-,sh 1000 10.0 vs, vh 1145 8 . 7 5 vw, sh 1300 7.7 m 685 1 4 . 6 v w , real? 1590 6 . 3 w , vb 1185 8 45 w 1640 6 1 m, b 740 13.5 s , v b 3180 3.15 vs, b 126.5 7.9 W 2320 4.3 m, b 3225 3.1 w, b53. Magnesium phosphate, tribasic Mga(POajz.4HzO 1630 -2220 3280 - 6.13 m 4 . 5 w , vb 3 . 0 5 vs, vb 79. Ammonium sulfite 69. Magnesium phosphate, (NHa)zSOa. H20 768 13.05 w, b 62. Potassium phosphate, dibasic monobasic 887 1 1 . 3 vw, b 1105 9 . 0 5 vs, b KzHPOc Mg(H2POa)z 1410 7 . 0 8 v s , sp 1% %E5] ," 837 11.95 s 755 13.2 w. vb 3075 3.25 s 1040 1135 1155 8.83 8.65 m w,sh 934 990 1110 10.7 s 1 0 . 1 vs, vb 9.0 w,sh 943 1040 1150 10.6 9.6 8.7 J m,vb 1 80. Sodium sulfite Na2S03 1230 8.13 w 1350 7.4 m, sp 1235 8.1 w , sh 1640 6.1 m 1835 5.45 m 1640 6.1 m 960 10.4 rs,b 3260 3460 3.07 2.9 s m, s h 2380 2860 4.2 3.5 m m iii: s. b 1135 1215 11.35 w 8 2 vw
  • 5. V O L U M E 24, NO. 8, A U G U S T 1 9 5 2 1257 Table 11. Positions and Intensities of Infrared Absorption Bands (Continued)vw = very x e a k xv = weak m = medium s = strong YS = very strong sh = shoulder b = broad vb = very broad sp = sharp imp. = impurity * = KBr region (15-25p) examinedCni.- Nicrons I Cm. -1 Microns I Cm. -1 Rlicrons I Cm. -1 Microns I 81. Potassium sulfite 92. Copper sulfate 101. Magnesium thiosulfate 110. Sodium selenate K?SOS. 2H20 cusoa MgSzOr .6Hz0 Na~Se04.10H~O 913 1100 10.6 vs, vb 9.1 vs, b 680 805 14.7 m 12.45 m - 665 1000 -1n.O 10.0 s s 735 793 13.6 vw, sh 12.6 vs 1175 8.5 s 860 11.6 m 1115 8.95 vs 838 11.95 vs 1645 6.07 v w 1020 9.8 w, sp 1645 6.08 m 573 11.45 vs 1885 5.3 vw. 1090 9 . 2 vs, vb 2250 4 . 4 5 > v. vb I105 9 05 m 3390 2.95 m 1200 8.35 s 3200 3.13 1125 8.9 m, s p 82. Calcium sulfite CaSOs. 2HzO 1600 -3300 - 6.25 w, sh 3.15 s , b 3360 3450 2.981 s 2.9 ) 1165 1240 1390 8.6 w 8.07 m 7.2 s 93. Zirconium sulfate* 102. Barium thiosulfate 1640 6.1 m 2350 4.25 s :$; i::: 653 1100 15.3 9.1 } m, b ~ sh , vw,vb 627 650 ZrSOa. 4Hz0 15 95 w 15.4 w BaSzOs.U2O 3220 3500 3.1 m 2.85 s , s p 1210 8.3 vw 720 13.8 w 1625 6.15 m,sp 770 13 0 v w , sh 111. Potassium selenate 3400 2.94 s , s p 920 10 9 v n , sh KsSeOa 1030 9 7 w, sp 810 12.35 v w . s h 83. Barium sul5te 1080 9.25 vs, vb 824 12.13 s , sp BaSOa 1630 6.12 m 1650 6.05 m 875 857 11.67 11.42 vw 638 15.7 m 3195 3.13 s 89? 11.15 m 917 10.9 vs. b 1080 9.22 vw 990 10.1 w 94. Chromium potassium sulfate 1110 9.0 vw 1070 9.35 m,vb Crz(SO4)d . KzSOa. 24Hz0 103. Sodium metabisulfite* 1140 8.75 vw 1200 8.35 m Na&Os 1375 7.28 vs 1410 7.1 v w 1090 9.2 vs 1745 5.73 w, sp 4.56 21.91 m 84. Zinc sulfite 1660 3370 6.05 w, b 2.97 m .:2 I a31 14..58 18.81 m m 2390 4.18 w,8p ZnSOs.2HzO 660 1.5. 171 95. Ammonium bisulfate ff7 ii 1,j.n / 112. Copper selenate 855 11.7 s , vb NHaHSOa 973 in.25 vs CuSeOa. 5Hz0 945 10.57 w lofin 0.4.5 1s 1020 9.8 s 855 11.7 m. b 11x0 8.5 . vs 770 13.0 m, b 1100 9.1 m 1035 9.65 m, b 1265 7.9 v w , sh 858 11.65 s 1160 8.6 m 1180 8.5 m, b 922 10.85 m 1630 6.13 m 1410 7.1 vw 1600 6.25 m , s p 3170 3.15 3180 3.15 m 104. Potassium metabisulfite 3220 3.1 3390 2.951 KZSZO5 3390 2.951 96. Sodium bisulfate RR2 1,5.l rn NaHSOh 85. Ammonium sulfate 645 , (NHa)zSOa 15.5 w - 655 773 - 215.3 ni 12.95 vw 475 iofin 10x0 1105 1 0 . 2 5 cs 4.ii 9 . 2 i ni 9 0.5 ni 113. Sodium chlorate NaClOa 1105 9.05 vs. b 935 10.7 s , s p 117.5 R. i 7s 965 10.35: 1410 7.1 vs, sp 1250 8.0 r w , ~ h 990 10.1 ( vs 1740 5 , 7 5 vw 3032 3.25 8.0 m 105. Ammonium persulfate 3165 3.161 s * s p 8.1 s 6.02 m (NHi)zSzOq 114. Potassium chlorate 3.85 vw fi?7 15.7 vw KClOa 86. Lithium sulfate* 2.88 m 702 14.23 s LizSOa. H z 0 938 10.65 w 793 12.5- w 962 10.4 YS 634 15.77 m 97. Potassium bisulfate 865 11 ..?.a 7-w 815 12.25 v w , real? KHSOa lOR0 4.45 s,sp 1020 1110 9.8 v w 9.0 T S 820 848 12.2 w , s h 11 8 s 1085 -1190 1280 - 4.23 8.4 7.8 m, w,sh v SD 115. Barium chlorate Ba(ClOa)n.H z O 1170 1380 1625 8.55 m, sh 7.25 Nujol 6.15 m , sp 1 + 877 1005 11.4 s 9.95 5 14211 3260 7.0.5 3.07 E t:;:5]vs. v b 3470 2.88 m 1065 9.37 S , SP 1610 6.2 m,s p 1160 8.6 vs,b 106. Potassium persulfate 3S40 2.83 s , s p 1280 7.78 s KzS201 3570 2.80 s , s p 87. Sodium sulfate NazSOa 1325 7.55 w, s h 710 14.1 1640 6.1 w I060 9 1? s , 3p 116. Ammonium perchlorate 645 15 5 w 1270 788 NHaClOa 1110 9.0 vs 2600 2:: j> m. vb 3.85 v w 1100 3300 7 7 3 02 w r vs 1060 9.45 v s 88. Potassium sulfate* 1136 8.8 s , s h 2900 3.45 s , v b 1420 7.05 s KzSOa 107. Sodium selenite NazSeOa 3330 3.0 s, sp 1110 9 0 vs 98. Ammonium thiosulfate (NHdzSzOa 720 18.7 vs 89. Calcium sulfate 953 10.5 s 788 12.7 s 1 7 Sodium perchlorate 1. 112.5 8.4 w , h NaCIOI. HzO CaSOa. 2Hz0 1065 1390 8.4 s t.18 s 1450 3330 6.9 Nuiol ? + 1100 0.1 vs, b 667 14.95 s 1650 6.05 w 3.0 w, b 1010 9.9 w, sh 1630 6.14 s , s p 2960 3.4 s , vb 2030 4.93 vw 1130 8.85 vs, vb 108. Copper selenite 1630 6.13 s. sp CuSe08.2Hz0 3570 2.80 s , sp 1670 5,95 w 99. Sodium thiosulfate 2200 4.55 m. b Na&03.5H20 714 14.0 v s 3410 2.93 s, b 768 17.0 m.sh 118. Potassium perchlorate 677 14.8 s 807 12.4 r w , s h KClOc 757 13.2 v w , sh 918 10.9 m 90, Manganese sulfate 1000 10.0 vs 1570 6.35 m 637 15.7 w MnSOd.2HpO 1125 8.9 940 10.65 v w ) " 1650 6.05 w 660 825 1025 15.15 m 12.1 s 9.78 nr 1165 1630 1660 8.6 G,l5 w 6.03 m 2270 -3120 3450 - 4.4 vw, v b 3.2 1 2.9 1 1075 1140 1990 93 s 8 . 7 5 s . SI1 5,02 cw 1135 8.8 vs, vb 2080 109. Ammonium selenate 3225 3.1 s, b 3390 2.95 vs (NH4)zSeOa 119. Magnesium perchlorate MgClOi 91. Ferrous sulfate* 1 0 Potassium thiosulfate 0. 770 13.0 FeSOh. 7Hz0 KzSzOs. H20 @ i:;i31 vs,vb 652 943 15.35 rn 10.58 w 10.4 w 611 16.37 s , v b 658 15.2 860 11.63, 962 990 10.1 vw 676 14.8 1235 8.1 w 1060 9.45 vs 1090 9.2 vs, vb 995 1 0 s 0 3 1420 7.03 s 1130 8 . 85 I 1150 8.7 m,sh 1120 8 95 v s 1640 6.1 m 1625 6.13 s , sp 1625 3330 6.15 m 3.0 s , b 1625 3300 6 15 v w 3 03 w 2320 -3140 - 1.3 ni 3.18 v s 2100 3540 4.8 2.83 s P , vb
  • 6. 1258 ANALYTICAL CHEMISTRY Table 11. Positions and Intensities of Infrared Absorption Bands (ConcEuded)vw = very weak K = weak m = medium s = strong vs = very strong s h = shoulder b = broad vb = very broad sp = sharp imp. = impurity * = KBr region (15-25p) examined C m - 1 Microns I Cm.-1 Microns Z Cm.-1 Microns I Cm.-1 Microns I 120. Sodium bromate 132. M a nesium chromate 140. Calcium dichromate 151. Barium permanganate NaBrOz MgErO4.7HzO CaCrzO7.3HzO Ba(Mn0a)t 807 1 2 . 4 vs 695 14.4 w, v b 725 1 3 . 8 vu. 840 11.9 m , s p 765 1 3 . 1 w, b 830 12.05 m 877 11.4 s 855 11.7 m , s h 900 11.1 m 913 10.95 s 121. Potassium bromate 877 1 1 . 4 vs 940 10.65 s 935 10.7 m KBrOa 1620 1625 6.15 m 1650 ::I%} 3450 2.9 s 790 12.65 vs 2270 4.4 m, b 3260 3 . 0 7 vs, b 152. Sodium ferroc anide 141. Copper dichromate NaaFe(CN)s. lOd0 122. Silver bromate AgBrOs CuCrz01.2HzO 1625 6.15 s , s p 750 1 3 . 3 s , vb 2000 5.0 vs 765 13.08 s 133. Barium chromate 2020 4.95 m, sh 797 12.55 vs 940 10.65 s 1280 7 . 2 5 Nujol ? + BaCrOa 1625 6.15 m i i g ii:z5} vs b 3450 2.9 s 123. Sodium iodate 930 10.75 s , s h NaIOs 3450 2.9 w 142. Sodium molybdate 153. Potassium ferrocyanide ;; i;:?} ; vs 820 NazMoO,. 2 H ~ 0 12.2 vs 930 &Fe (CN)8.3H20 10.75 vw 800 12.5 m 855 11.7 m 995 10.05 vw 134. Zinc chromate 900 11.1 m , s p 1630 6.13 8 , sp ZnCr04.7HzO 1680 5.95 w 1650 6.07 m 124. Potassium iodate 720 13.9 m 3280 3.05 s 2015 4 . 9 6 vs KIO? 3410 1 ;:%} 795 12.55 s 738 13.55 vs 875 11.4 3510 755 13.25 s 940 10.65 143. Potassium molybdate 800 12.5 w 1050 9.5 KzMoOa.5HzO 1090 9,l5 s,b 1183 8.45 m 825 1 2 . 1 va 154. Calcium ferrocyanide 125. Calcium iodate 1620 6 . 1 5 vw 900 11.1 m CazFe(CN)n. 12Hz0 Ca(I0s)z. 6HzO 1820 5.5 vw, b 3310 3.02 m 1615 6 18 m 2700 3.7 w, b 2015 4 . 9 6 vs, sp 748 13.35 m 3450 2.9 s,b 3390 760 13.15 m 144. Ammonium heptamolybdate 2 . 9 5 vs, b 775 12.9 s (NHa)nMoiOzi.4HzO 817 12.25 8 827 1 2 . 1 vw, sh 663 1 5 . 1 vs 838 11.93 v w , s h 135. Lead chromate 836 11.95 m 155. Potassium ferricyanide 1610 6.20 w , s p PbCrO4 877 11.4 vs KsFe(CN)e ::::1 913 10.95 w , s h 3350 3450 i::8} 825 855 vw. vb 1420 1640 7.05 s 6.1 w 2100 4.77 s 885 11.3 3080 3.25 s, b 126. Potassium periodate 156. Sodium cobaltinitrite KIOa NaaCo(N0l)s 848 1 1 . 8 vs 145. Sodium tungstate 136. Aluminum chromate NazW04.2 H z 0 847 11.8 s , s p Alr(CrO4)s 1333 7.5 vs 810 12.35 w , s h 1430 7.0 vs 127. Ammonium metavanadate 745 13.4 s , v b 822 12.15) 1575 6.35 m NHdVOa 950 10.5 s , b 8.50 11,751 vss 1645 6.07 w 690 14.5 s, vb 1010 9.9 s 925 10.8 w 2665 3 . 7 5 vw,s p 843 11.85 s 1300 7 . 7 vw 1670 6.0 w 2780 3.6 vw, sp 888 11.25 s 1625 6.15 m 3310 3.02 s 3450 2.9 m 3460 935 1415 10.7 s 7.08 s , sp 3520 ;:ii} 3200 3.12 8 , sp 146. Potassium tungstate KsWOc 157. Ammonium hexanitratocerate (NHdzCe(N0dn 128. Sodium metavanadate 750 13.3 vw NaVOa . 4 & 0 137. Ammonium dichromate 823 1 2 . 1 5 vs, b 745 13 42 8 , sp (NH4zCrzOi 925 10.8 w 803 12 45 m, sh 693 1 4 . 4 s, b 1680 5.95 w 807 12.4 8 , sp 828 12.08 s 730 1 3 . 7 vs 815 12 25 vw 877 11.4 m 3170 3.15 m 910 1 1 . 0 vw 3320 3.01 w,sh 1030 9 7 s, s p 935 10.7 900 11.1 m 1050 9 5 vw 957 10.45} 925 10.8 s , s h 1260 7 95 vs 3450 2.9 w, b 950 10.55 s 1325 7 55 w 1410 7.1 s,sp 147. Calcium tungstate 1420 7 05 s 2850 3.5 m, sh Caw04 1530 6 6 vs, b 129. Ammonium chromate 3060 (NHd)zCrO4 3170 ::%} 794 1640 1 2 . 6 vs, vh 6.1 w 3210 3 11 s, b 74 5 13.4 m 3390 2.95 m 843 11.85 m, ah 865 11.55 vs, b 158. Ammonium chloride* 935 1 0 . 7 m. sh 138. Sodium dichromate NHiCl 148.Sodium permanganate 1410 7.1 8 NalCrzOr .2Hz0 NaMn04.3Hz0 1410 7.1 8 , sp 1650 6.05 m 1780 5.75 w,b 2860 3.5 m.sh 13.55 vs 840 1 1 . 9 vw, sh 12.8 m 2000 5.0 vw 2990 3.35 s 896 11.15 vs 2860 3.5 m 11.25 8. sp 3120 130. 3.2 m,sh Sodium chromate 11.0 m , s p 9 . 0 7 vs 7.2 Nujol 1 + $: ::e} :: 1625 3510 6.15 s,sp 2.85 s w,b 3070 3150 ::?!} NaKrOd ;:A;} 8 , SP 159. Barium chloride 680 820 855 890 915 14.7 m i?:: 11.2 10.90 1 vs, b m,sh 2.85 8 149. 845 Potassium permanganate KMnOd 11.85 w 700 1615 1645 BaClz.2HzO 1 4 . 3 vs, vb 6.18 8 , sp 6.07 8,sp 1665 6.0 s,sp 139. Potassium dichromate* 900 11.1 vs 1725 5.8 w 3370 2 . 9 7 vs 2125 4.7 m, b KnCrzOi 3170 3.15 vs.b 568 17.61 w 760 13.15 vs 150. Calcium permanganate 160. Nujol 131. Potassium chromate 795 12.55 m Ca(Mn03z.4HzO KzCrOh 885 11.3 m, SP 2918 3.427 s 905 11.05 m , s p 840 11.9 m 2861 3.495 a 858 11.65 w, sh 920 10.85 w , ~ h 905 11.05 vs, b 1458 6.859 m 11.45 vs 940 10.65 vs, b 1625 6.15 8 , s p 1378 7.257 m 935 10.7 s 1305 7 . 6 5 vw 3470 2 . 8 8 vs 720 13.89 w
  • 7. V O L U M E 2 4 , NO. 8, A U G U S T 1 9 5 2 1259one of the salt plates with a very thin layer of solid paraffin to The purities of the samples are indicated in the legends for thehold the particles in place (6, 7 ) . The fine powder may be pre- curves.pared by grinding, by evaporation of a suitable solvent (6, 7 ) , or Some idiosyncrasies of the curves warrant mention. Many ofby sedimentation ( 5 ) . Vacuum evaporation which has been them show weak remnants of the carbon dioxide bands near 4.3used for preparing films of ammonium halides ( I I ) , may be useful and 14.8 microns. The latter always appears as a sharp upwardfor other relatively volatile inorganic materials. pip. Many of the curves exhibit a drop in transmission near Spectroscopic Procedures. 8 1 1 samples were examined from 15 microns and then a small increase beginning at 15.5 microns.2 to 16 microns with a Baird XIodel A infrared spectrophotometer. The initial decrease is due to the absorption by the sodium chlorideWave lengths are accurate to about zt0.03 micron, although for plates, which was not compensated in the reference beam. Thebroad bands the error of judging the center may exceed this. It reason for the later increase is not known, but it is not real. Itwas sometimes found that duplicate spectra for the same com- has the effect of suggesting an incorrect position for bands nearpound differed by more than thisamount. Some oossible reasonsare mentioned below. Table 111. Infrared Bands of Various Nitrates (Cm.- Representative ex a m p 1 es of Intensity m, s p a w m, sp w VS S S VS vwseveral ions were examined in .. , . 836 .. 1358 .. .. 1790 2428the potassium bromide region 824 .. 1380 , . .. 1767with a Perkin-Elmer 12B spec- 733 803 835 1318 .. , . .. 820 1044 (1359) ( 1430) (lii0,trometer. Likewise, a series of 737 .. 815 .. 1387 1441 .. 1795 2iio 729 .. 817 .. 1352 1418 1774 (2410)ten nitrates was examined in the .. 835 .. 1361 , . . . i6ij (1640) (1785)rock salt region with this same .. (807) 836 ., 1372 .. 836 .. 1378 .... 1587 1790 2431instrument in order to fix the 726 807 836 .. 1373 , . ..wave lengths of absorption more Bands >3000 cm.-L are omitted. ( ) Baird values, less accurate.accurately. a w, ni, s = weak, medium, strong. g p = sharp. v = very. No attempt was made to putthe spectra on a quantitativebasis. RESULTS 16 microns. For example, in ferrous sulfate heptahydrate The spectra are presented a t the end of this paper. Table I ( S o . 91) the curve indicates a band a t 650 cm.-l (15.5 microns),lists the compounds examined and gives the numbers of the cor- but actually it is a t 611 ern.- (16.5 microns).responding spectral curves. Table I1 summarizes the positionsof the bands in wave numbers and in microns, and gives estimated DISCUSSION OF RESULTSpeak intensities. If more precise wave numbers have been The spectra range in quality from surprisingly good ones, withdetermined with the Perkin Elmer spectrometer, they are used. sharp, intense bands (see curves for barium thiocyanate dihy-Asterisks indicate those compounds examined in the potassium drate, No. 28; strontium nitrate, No. 44; and ammoniumbromide region. hexanitratocerate, No. 157,) to very poorly defined ones such as The spectra themselves are shown in graphical form. Nujol those for potassium silicate, S o . 32; monobasic magnesiumbands are marked with asterisks; portions of curves run in fluoro- phosphate, No. 69; and monobasic potassium orthoarsenate,lube are indicated by an F. The spectra of Nujol and fluorolube KO.75. I t seems to be characteristic of the phosphates, andare included for comparison (No. 160). I n a few cases the ponder especially of their monobasic and dibasic modifications, to havewas used without a mulling agent; these are indicated by P. ill-defined spectra. The reason for this is not clear, but it may be due to lack of a single, well-ordered crystal c rn-1 structure. Effect of Varying Positive Ion. One of the pur- poses of this study was to ascertain whether the various ions have useful characteristic frequencies. It was therefore of interest to know the effect of altering the positive ion. The spectra of ten SUI- fates are shown in Figure 1 in the form of a line graph. I t is seen that two characteristic fre- quencies occur, one a t 610 to 680 em.- ( m ) and the other a t 1080 to 1130 cm.-l (s). There is enough variation between the individual sulfates so that it is often possible to distinguish between them from the exact positions of the bands. Table I11 presents similar data for ten nitrates. Again there are characteristic frequencies, a t 815 t o 840 cm.- (m) and 1350 to 1380 (vs). The authors I have been unable to find any orderly relation be- MnSO4.2W tween the positions of these nitrate bands and a I I property of the positive ion, such as its charge or ZrSO4.4W mass. This is not surprising, for there are a t least I I1 . three reasons why a frequency may shift slightly asC r S 04 K2S 04 I the kind of positive ion is changed. 24 W The different charges and radii of the various Figure 1. Comparison of Infrared Spectra of Ten Sulfates positive ions produce different electrical fields in the various salts. These doubtless affect the vi- W. Water brational frequencies of the negative ions. vh. Very broad s h . Shoulder (Continued on page 1298)
  • 8. 1260 ANALYTICAL CHEMISTRY IW /4n I W I I I I Sodium metaborste, NaBOz 10 , A~ ;I ZU ;$ : C.P. = bo F ~ ~ z 40 i ~f ~ ~ 20 ~ , J ~1 I I I 0 0 2 4 5 6 I 8 7 10 I1 12 I1 I4 1s WAVE LENGlH IN MICRONS WAVE NUMBER5 IN CM WAVE NUMBERS IN CMI 500) Urn low 2SW ?OW ,5WI,W IIW I200 liW Iwo 9w aw 700 b2S Magnesium metaborate, Mg(BOz)z.SH:O C.P. 2 1 4 5 b 7 I 9 IO 11 12 I1 I4 IS I6 WAVE LENGTH IN MICRONS WAVE LENGTH IN MICRONS WAVE NUMBERS IN CM WAVE NUMBERS IN CM 5wo Urn 100) 2100 lwa Ism ,104 I1W I100 IIW Iwo 9w I00 7w b2S lM 100 Lead metaborate, Pb(BOdn.Hz0 IO IO C.P 560 bO 3 z g* 40 z 20 20 0 0 2 I 4 5 6 7 8 P IO I, I1 I1 I4 IS I6 WAVE LENGTH I MICRONS H WAVE LENGTH IN MICRONS Sodium tetraborate, Na2BO. 10Hz0 C.P. WAVE LENGTH IN MICRONS WAVE LENGTH IN MICRONS WAVE NUMIRS IN C H WAVE NUMBERS IN CM1 ,5Wl,W 1100 IIW llW Iwa 9W ud 7w 625 500) (ooo 100) 2Mo low IM Potassium tetraborate KgBdO?.5HzO IO c P. i* z z e 1" : 20 0 WAVE LENGTH IH MICRONS WAVE LENGlH IH MlCRMlS
  • 9. V O L U M E 2 4 , NO. 8, A U G U S T 1 9 5 2 1261 IW Manganese tptraborate, 1 I I I " 6* MuB4&.8HzO 80 . 10 E iQ r I! 1 1 , 1 M) CP .. I Zb z f, . 0 L II j * Y ~ 20 v I 1 ilo 0 I 1 0 I 4 5 b 7 8 V 10 II 11 I1 I4 I5 I . IW. I 1"Sodium perborate, I ?;aBOa.lHdI 10 IO V " Y l C.P. s5 60/ * I l /- h- , (0 j la/ I I I AIL l/* !1 r EO ~ I * s I I :L/; I I IO 0 11 ~ I 6 1 7 ~ I 1 V ~ 10 I1 I l I I1 I l I1 I4 I5 Ib 10 0 Boric acid, HiBO 02. SVX 4oW 1VX ZSW 1VX IIW l u x ) 1100 IlW liW loo0 9w 1) 0 7m 615 100. loo Boron nitride, B N 9 . r - Y < IO / F ! / * - m Pure p7f z c L uI M c Ob ~ I I * Y I 1 I Y 10 . 1 1 10 Q / ~ I 1 I I J 1 4 5 b 7 I 9 10 11 I1 I I4 I5 Ib 100. 10. -# - - - I5W lux) 1lW 1100 1100 IVX (w V iw 700 615 10 Lithium carbonate, LizCOa i I IO H F I u AR 64 fa- zi I , i *- 40 lo ~ 0 1 8 9 0 I I1 I1 I IS Ib
  • 10. 1262 ANALYTICAL CHEMISTRY WAYL NUM?ERS IN C M WAVE hLM5ERS Ih C U I 5ccO wO 3w0 15W lw(. 1 5 w 1 4 c a 1100 iico )loo iom FCO 6CC 100 bli Sodium carbonate, NazCOi AR Potassium carbonate, KnCOi AR Magnesium carbonate, basic, 3MgC.01- Mg(OH)n.aHnO Unk Calcium carbonate, CaCOa AR 5wO u40 1wO 2m 1004 ISWilW IIW I700 ll00 IOW 9w IM IW b15 IW I r 3 15Im Barium carbonate. BaCO: - 7 ! - 80 I J -80 AR " Y 5. f I ~ 1" * -~ -- I 1-1 10 Y ! 10 10 41 1 5 L WAVE LENGTH IN MICRONS b 1 I V 0 I I1 I 1 WAVE LENGTH IN W C R M I S I5 b0
  • 11. V O L U M E 2 4 , NO. 8, A U G U S T 1 9 5 2 I,263 WAVE NUMBERS IN C M WAVE NUMlfRS IN u ( l 5 io0 Cobaltous carbonate, COCOl W Unk. m 0 1 1 5 b I I 11 I1 I1 14 16 lb WAVE LENGW IN MICRONS WAVf LfNOTH IN MICRONS Lead carbonate, PbCOj Unk. Ammonium bicarbonate NHiHCOa Sodium bicarbonate, NaHCOa C.P. Potassium bicarbonate, KHCOI C.P.
  • 12. 1264 ANALYTICAL CHEMISTRY IW I i I Sodium cyanide, NaCN 80 I Na,CO. k. - W NaaCO3 impuritg I 40 P 20 20 0 I I 0 Potassium cyanide KCN IlHCOa and K:COa impurities Potassium cyanate, KOCN Considerable KHCO impurity Silver cyanate, AgOCN "Higheat purity 1 I Ammonium thiocyanate, mPY- I,/ I IW1 -7 2 5 1 m NHaSCN IO 80 s I I I 1 AR fM 2 " D c F E" 10 E 10 1 1 10 I 0 0 1 1 8 e WAVE LENGTH IN MICRONS 10 I II I1 WAVE LENGTH IN MICRONS 14 5 Ib
  • 13. V O L U M E 24, NO. 8, A U G U S T 1 9 5 2 1265 Sodium thiocyanate, SaECS Potassium thiocyanate KBCS AR WAVE NUMBERS IN C M WAVE NUMIIERS IN CM XCC Urn 3wO 1SW 3000 ISW I4W IIW 12w I W Iwo 9w 8W IW b25 IW 100 Barium t h ~ o c y a n a t e Ba(SCX):.2HzO IO (0 C.P. i M (0 f e 4 5" $ 10 20 0 0 1 3 1 5 h 7 1 V IO I! I2 I3 I4 lb WAVE UN6TH IN MICRONS WAVf LENGTH IN MICRONS WAVE NUMBERS IN CM WAVE NUMOERS IN CM1 sox 4ccc 3mo 25w 2000 I5W l4W l3W 17W W IWO Vw 8W 703 bl5 lW lW Mercuric thiocyanate, Hg(SCS)* 1- (0 m (0 4 Pure I" Y 20 10 0 0 2 3 4 5 6 7 V 0 It I3 I4 15 Ih WAVE ttNGrn IN M~CRONS W A S W l IN MICRONS li WAVE NUUBERS IN C M WAVE NUMBERS IN C M S O W 4wO IWO ISW lD00 1503 I+W IIW I1W I w lax, 9w SOD 7w hl5 - 0 1 lop Lead thiocyanate Pb(SCN)* IO m 3 kt4 CP .. n < rm 4Q v 20 0 0 1 I 5 L 7 V IO I1 11 I1 Ib IS Ib WAVE LENGTH IN MICRONS WAVE LEN6TH IN MICRONS
  • 14. 1266 ANALYTICAL CHEMISTRY Sodium metssilicate, NarSiOr5HaO O.P. Potassium nietrtsilicate, KrSiOi OP .. Xm u*yI 1800 1100 lOm Iyo 100 110) Irn Ilm la4 no 800 1W (11 IW Io. I J rr-"---/ 33 w Sodium ~ i l i r o f l ~ ~ o r i d ~ , SazSiFe W * 1 7 ?- I 1 W a.p. 8" I L 1 44 s * 20 20 ~ 0 0 3 I I b 1 8 7 0 I1 I ll I+ I& Ib WAVE NUMBERS IN CM WAVE NUMBERS IN CMI Silica gel, SiOmHrO WAVE LM6W IN MICRONS WAVE U N 6 W IN MICRONS 5 IW Sodirim nitrite, NaNOi H C.P. 44 10 0 4 2 I I WAVE 5 b LWOM IN HICRM 7 I * 0 II WAbl IuN6W IN I MCRONS 3 4 It b
  • 15. V O L U M E 24, NO. 8, A U G U S T 1 9 5 2 1267 Potassium nitrite, KXO, C.P. tm I 37IW Mver nitrite, AgKOz MI -. / / Y w C.P. 3 1- f L I Y I * ~ la 20 I fi 20 I * 2 1 I 1 4 5 6 7 e IO I 2 1 14 I5 Ib 0 WAVE LEWTH IN UlCRONS WAVE LENGTH IN WCRONS WAVI NUMBERS IN C U I WAVE NUMBERS IN CM I 5 Barium nitrite, Ba(N0:hHsO 80 C.P. Y a 20 0 2 1 5 6 7 I e IO II I2 I1 I4 I5 Ib WAVE LLNGTP IH H U M S WAVE ENOW IN mcRoNs 5 im Animonium nitrate, NHaKOs W C.P Y 20 2 I I 5 b 7 I IO II 12 I> I4 Ib * WAVE UNOIH m MICROHS WAVE LENOM IH MICRONS WAVE NUMBERS IN C U WAVE HUMBEIS IH C W Sodium nitrate, KaNOa AR a WAVf YHCM IN MICRONS
  • 16. 1268 ANALYTICAL CHEMISTRY 5wO UDO 105) 2SW 2mO 1100 l4M llm IlW ll00 IXd rn im , , 700, b25 W loo z 60 1 I // l P w d 4Io l Potassium nitrate, KSOa z bo/ I 1 1 M A 11 ; S 401 10 g e 10 * I I I 10 0 1 1 I 5 b 7 I 0 I 1 1 I IS Ib * Silver nitrate, AgSCs C.P. Calcium nitrate. Ca(Pi0dp C.P Strontium nitrate, Sr(XOd3 Unk. WAVE WUMlERS N CM 5 100 Barium nitrate, B~.:(?jod? (D A It 10 10 1 1 4 5 b 7 I 10 It I1 I1 16 IC 1b * WAVE LENbTH H MICRON5 WAVE LEN6lV IH MICRMIS
  • 17. V O L U M E 24, NO. 8, A U G U S T 1 9 5 2 1269 Cuprio nitrate, Cu(XOi):.3H:O C.P. Cobaltous nitrate, CO(;203) €I20 2.6 AR Lead nitrate, Pb(XO3) AR 100. IW Ferric nitrate, Fe(S03)3.9H20 80 ~ * - 79 - 4 " ~ no 3- i AR z bo- / / I z i t 4 2 i9 20 r P " ~ p , 4a 20 0 2 I 0 W A d LENGTH IH MICRONS a V 0 I 2 I3 WAVE LENGTH IN MURCUS Ik I5 Ib Bismuth subnitrate. BiOSO3.HnO Unk.
  • 18. 1270 ANALYTICAL CHEMISTRY IW 80 - " I 1 51: Eodium phosphate, tribasic, NalP04.12H;O s 5 EM I / I b4 AR 1 f ! i Y 0 10 J I / I F 1 I 1 I ( 1 I I 4a 20 I l l 1 0~ 2 1 I I b W A M L W l H IN MICRONS 7 I I t v D I 1 I2 I1 WAVE LENGTH IN WCROHS I4 IS Ib 0 5 M Mo( 3oW I w - I ( " , 2W W I i 52lw Potassium phosphate. 80 1 I v i I , ; I 10 tribasic, &PO4 * 3- ji ! ! c. P I I * /I j I I I I 40 L: IC/ a- lol j I20 :1* I I i I 0 0 ~ 2 I I 5 b 7 8 e IO 11 I2 I1 I* 15 swo k4f8 1m 2100 zoo0 Ism lua IlW I2W IlW Imo (00 aw 700 b25 IW " . ! I 80 ?I b-,* A /-. -., I I I 153r Magnesium phosphate, tribasic, Mga(POdyAHz0 P g, f :i I i J i? , I I8O b a C.P. g I I -$ Z" I ! t ~1 4a P 10 I; I V I I ! I I I IO * 0 2 3 I 5 b WAVE LEN6TH IN MlCRMiS I 8 . 0 I1 I2 I3 WAVE LENOW IN MICRONS Ib 0 Calcium phosphate, tribasic, Cas(PO4)r r.e Manganese phosphate, tribasic, Mni(POdp.7H10 C.P.
  • 19. V O L U M E 24, NO. 8, A U G U S T 1 9 5 2 1271 WAVE NUMltRS IN C M WAVf NUMBERS IN CM1 Imp m tmo 2100 Ima IW I- I IIW I IZW iim imp tW I IN I IW 5 qoo LIS Nickel (ow) phosphate, tribasic, 1 / ir 7 - . m., , , ! I - Nia(POdz.7 H?O / * 1 I I , * 1 / , i i 7 I I , L, , I ~ l I ; I I I I I I I I 0 Copper(ic) phosphate, tribasic, Cut(POa)z.3H10 C P WAYZ NUMBfRS H CM WAVE NUMBERS IN C M 5wO IWP ION 25W ZOW 15w Iuc 1100 L , m lIW Iwo 9w IN 100 b15 58Iw Lead phosphate, tribasio, PbdPOdz IO I C.P. I? I I ~ i* 10 . I 0 I 1 5 b 7 I V 0 I 12 I1 I4 I5 Ib WAVE LENGTH IN MICRONS WAVf LENGTH IN HhROlll WAVE NUMBERS IN CM 5 iw Chromic phosphate, tribasic, (0 CrPOc.Hn0 P.P. M 40 20 0 5 b I I V IO I1 I1 I> I4 I6 WAVf LfNGTH IN UICROM WAVf LENGTH IN MKRONS Ammonium phosphate, dibaaio, (NHOrHPOt C.P
  • 20. 1272 A N A L Y T I C A L CHEMISTRY WAW W W S IN CU- WAVE NUMDERS IN C U I l5a IUD I1rn I200 llrn Im, 100 700 b25 100 100 Sodium phosphate, di- basic, NaSHPO 1.12 H 0 2 S 80 CP .. U E I" 4 P n 10 I I I I IW I I I 1 I I I 1 4 5 b WAVr W T H IN UCRONS 1 8 * 10 I1 I2 I1 WAVr LW6W IN MICRONS I4 I5 Ib Potassium phosphate, dibasic, K ~ I I P C I (0 C.P. E M f o4 20 F 0 WAYS W T H IN MKRONS WAVE ENSW IN UCRCUS llagnesium phosphate, dibasic, MgHPOa.3HzO C.P WAVE NUMBERS IN C U I WAYS NUMBERS IN CU I w urn 1 m 2x0 2wo 5 Irn ID3 Calcium phosphate, dibasic. CaHP04.2H20 10 m C.P jM Lo f 5" 4 P 10 20 0 2 1 5 6 I 8 * IO II 12 I1 I4 I5 Ib 0 WAVE UNSW IN UKROM WAVE LENGTH IN MICRONS WAVE NUMllRS IN C U I Barium phosphate. dibasic, BaHPOi C.P. 1 a 4 5 b WAVr LBTW N W W 7 8 * IO I1 I1 t i WAVE LWSM IN MICRONS I4 I5 Ib
  • 21. V O L U M E 2 4 , N O . 8, A U G U S T 1 9 5 2 1273 IW ~ 67lW Sodium phosihate, mono- basic, KaH1POd.HsO IO ao C.P 1 w In kb3 n 5 F 5 a- 8 t 20 ~- I F I lJ v -vd 1 a 20 I 0 2 I . I 5 I L 7 I 9 i0 I 1 0 IW lW I 1 1 I I - 68~ Potassium phobphate, monobasic KHlPOl .- IO P 2 5" z * J - 1 I IbO C P I I ia 20 * I I i*) 10 1 I 0 0 2 3 4 I b 1 8 v 0 It 2 3 I4 16 Ib WAVE UNOTH IN *UCRON5 WAVE UNSTH IN MICROM .Iagnesium phosphate monohaeic, 3Ig(HzPO& c P. C . P. I 0 2 I 4 6 b 7 8 ID I1 I2 I3 I4 IS Ib WAVI W ? H IN MICRONS W A X M O T H W MICRONS Calcium phosphate, mono- basic, C a ( H ? P 0 3 ~ . H r O .R
  • 22. 1274 ANALYTICAL CHEMISTRY Sodium rnetaaraenite, YaAsOe AR I I 72O0 Calciuni orthoarhenate, IWW( I I 1 I i tribasic, Cas(AsOd2 to C.P. M 4a l, / f/ XI 0 1 3 4 5 b 7 I I ID I 12 I1 I4 IS Ib WAVf LfNGTH IN MICRONS WAVE LLNGTH IN MICRONS Fodiuni orthoarsenate. di- haiic, Na:HAsO~.iH,O Unk. Lead orthoaraenato, dibasic. P ~ H A s O I C.P. WAVE NUMPfRS IN CM W A M NUHIILRS IN C H I X48 1000 *Dp 2100 IWO Sm 110) ,100 Ilm llm Imp 9m UD 7m bZS Im P o t a w u r n orthoarsenate, inonohasic, KH14a04 iR M 4a m 0 2 3 4 5 6 7 8 10 II I2 I3 I4 I6 Ib WAVE LENGTH IN MICRONS WAVE LfN6lH IN HKRONS
  • 23. VOLUME 24, NO. 8, A U G U S T 1 9 5 2 1275 Arsenic trioxide, .-sr03 Vnk. Yodirirn
  • 24. 1276 ANALYTICAL CHEMISTRY Potassium sulfite. K?S0!.2H?0 r I, Calcium sulfite, CaSOi.2H20 C.P. Barium sulfite, BaSOi C.P. Zinc sulfite, ZnSOa.2HnO C.P Ammonium sulfate, (NHWOd Unk.
  • 25. 1277Sodiuiii sulfate, Xa?SOd ARPotawlurn sulfate, lid304 ARCalcium sulfate CnS04.2H20 ARXIangnn-e aiilfare, JInSOc2HzO C.P.
  • 26. 1278 ANALYTICAL CHEMISTRY Ziroonium sulfate, ZrEOi,4H?O i BO I ~ C.P. d , ~ I , I , rJ I 20 oi I I ~ 1 * ~ 1 I 5 6 j ~ 7 I I 9 IO I I, j I 12 i 13 k 15 Ib 0 IO fii ! * 10 1 Chroiniu~npotassium ralfare, CI.E(SOI)J.- lirR0~.24H:O I g i __r 5 Unk. ~ I I ,I bo bo; f~ I i 5 10 _ , "i 0 , J z l 20- ; . j ~I ! i i : j" 1 I IC * : ol I I i I I 110 I 1 1 5 b 7 V 0 I1 I ,I I , I5 I6 WAM tEwm IN MICRONS WAVE LENGTH U UICRONS I Ammonium bisulfate, NH4HSOl C.P
  • 27. V O L U M E 2 4 , NO. 8, A U G U S T 1 9 5 2 1279 Sodium biaulfate, XaHSOI AK Potassium bierilfate. KHSOI AR Aiiiruoniurii thiosrilfate ( N€i,)..S2OI C.P Sodium thiobulfatr, xa:S*03.5H?o .R I Potassium thioniilfntr, KnSrOa.Hr0 C.P
  • 28. 1280 ANALYTICAL CHEMISTRY WAVE NUMBERS IN CM W A M NUMBERS IN CM I1100 k1100 31100 IHD 2Wa IHDiHiO ,IS0 l1W ilW two PW BOO 700 b2S IW IW I I Magnesium thiosulfate, I hlgS20a.6H10 C.P. Barium thiosrilfatr, Be&Oa.H>O C.P Sodium ~netahisrilfite, Wa?PtOs Potassium nietittiisuifite, Ii2SnOr AR IW, I Arnmoniuni persillfate. (NHI)?S~O~ IO - 4 1 .IR !bo7A 1~ ~ I 1 5 E 10 , i V I * i , il 20 + m I 4 5 b I 1 8 j P 0 II I1 I I4 I5 Ib O
  • 29. V O L U M E 24, NO. 8, A U G U S T 1 9 5 2 1281 Potassium persulfata, KnStOs C.P. Sodiiini selenite, PlalSeOd Pt i y e IW I i I I 08ImCopper selenite, CuSeOL2HZ0 Y *? A (0 Y I t Vnk. 5 M A a I I I / z ~ 5 40 I , 4 $ 1 ~ ,I I 20. 20 i I / I I 0 0 I 1 I 5 b 7 8 V 0 II I2 I3 I4 IS I6 Sodium selenate, SazSe04.10H~O C.P.
  • 30. 1282 ANALYTICAL CHEMISTRY WAVE NUUlKRS IN C M WAM NUHBERS IN CM rKa urn ma 1XD mo b% ,Cd 100 Potassium Belenate, KzSeOi 80 W C.P. 60 4 10 20 0 0 1 1 4 5 b 7 8 IO I1 I1 I3 I4 I5 Ib W A M LENCTH W MICRONS WAM LENSTH IN MICRONS Copper selenate, CuSeOc5HzO C.P. Sodiuiii chlorate, liaCl01 AR Potassium chlorate, KClOa AR Barium chlorate. Ba(C10a)z.HaO C.P.
  • 31. V O L U M E 24, NO. 8, A U G U S T 1 9 5 2 1283 WAVE N V H l E R S IN C U W A S NUMBERS IN C M I 5 IW 80 L.P. M 4c 20 0 2 3 I 5 6 7. I IO II I2 I3 I4 I6 16 WAVE LENOTH IN MICRONS W A M LLHSTH IN MICRONS 5mo UC4 ImO I= 2mO lrm 1w 4 lrn 1100 11m Iom m 10) IW 1 I IO p?, 1 f"" 1 n,.L-, * & ,ii 11 $ s * 2 $10 8 11 ;ir I I I L 10 x LJ I t 0 ym urn 3om 250) 2om 150) 14w 13W la IlW ImO sw 8W 7w )IS , :/ 1 I l l , I l l , , , 1w- d i IS* ? 80 > ! .I j I I 80 ! AR 5 b0 z I bo , n I # ; 2W Z I i I 1 l ~ ! ! d* Y , ?r IO I I 1 1 I- 0 I+! 2 0 0 2 3 I S b 7 I 9 0 11 I2 I1 I4 IS Ib IW -lW I I 10 r rL I V/? nf I 1 1191 1 10 P / I / I I I I , I /* 87 I i 1 h , . I I 11 1 1[ I Mgd104 ~ 1 I I - 10 r ZW I I 2 10 1 i1 L 1 0* - 2+ I I I 0 lo 2 3 4 S b 7 9 0 I1 2 I3 I+ IS Ib
  • 32. ANALYTICAL CHEMISTRY Potassium bromate, KBrOa hR Silver bromate, AgBrOi C.P. Sodium iodate, KaIOz C.P. I10 I90 0 I I 4 6 b I 7 0 I1 1 I I , IS Ib Potasaium iodate. K I O i Unk. Calcium iodate, CaIOa.BHz0 OP ..
  • 33. V O L U M E 2 4 , NO. 8, A U G U S T 1 9 5 2 1285 Potassium periodate, KIO4 C.P. .4mmonium metnvana. date, NHcVO: c. P Sodiurn rnetavunadate. SnVOz.IHr0 Sodium chromate. KaLrO4
  • 34. 1286 ANALYTICAL CHEMISTRY WAVf NUMBERS M CM WAVE NUMBERS IN CM ym urn 3m0 Ism ZmO IUD ,100 1100 I200 1100 ImO wo 800 1m b2S Im I I IW Potassium chroinate, rlV$ - I I IO KnCrO4 !* - 5* ~ + ; I z i9, rA I * I P, W //J I O 20 I I I 10 0 I 3 I * 4 5 b 7 8 I I IO W ,I I1 I I I4 I5 Ib 0 l l a g n e j i u n i chroniate, MgCrO~.iH~O f iiii i I I I 1 10 C.P. Barium ciironiate, BaCrOa C.P. Zinc rhromate. ZnCr04.7IipO C.P. WAM NUMBERS IN C M WAVf NUHIERS IN CMl pm 8W 1m
  • 35. V O L U M E 24, NO. 8, A U G U S T 1 9 5 2 1287 136 Aluminiini chromate, Alz(CrO4)i M I C.P. I 1 S 1 I -/I , I I I IO I oI 3 , , 5 I 1 1 WAVE W T H IN MICRONS 7 8 t 0 ,I I, WAVE LENGTH IN MICRCUS 4 I5 b 0 Wr(0 m>YE nm IUD lua 110 Ilm IlW lmo Ho em 7m 625 im I Ammoniuni dichroniate, I 37 10 1 80 (XHi)zCrSO; z < !/ f I I 1 ~ i : , d i S C.P. S I I F j I $ 10 l V 1 I I I ~~ ~ rI I ,VI 1 40 m 0 3 . 5 I b 7 8 7 IO I1 I1 I3 WAVE LENGTH m WCROHS I4 IS b 0 - WAVE LINGTH IN MKlOHS 100 Sodium dichroinate, I I38 NatCrtO; .2€ 1 2 0 IO W ! / [- iM - 1 - !! 7T / -c C.P I I d !/ I Y I rl t 1 , 44 I 20 I * I 1- i iL IV m 0 . , 0 2 I 5 b 7 I 9 0 II I I1 I4 I Ib WAVE W T H IN MICRONS WAVE LEN6TH IN MKRONS WAVE NUMBERS H W WAVE HUMERI IN W1 uyx)uDo mnm laa IUD 1100 iim im iiw ID^ ua m 700 b15 im I 4 C Potassium dichromate. K~CTSOT M W L-nk. iQ : fb M ;;" 40 Y 20 m 0 I 3 . 5 WAVE UNOW b IN I ~ O N S 7 8 9 IO I1 I1 I3 WAVE LEMGTH IN MKROM I4 IS Ib 0 WAyt NUMlERS IN C Y WAVE NUMDERS IN C M row urn nm IUD Imo IUD iua iim IIW itw imo 9m em 7m bl5 Calcirini dichromate. CaCrzO;.SHrO C.P. 1 I O I I *Y II 4 5 1 b 7 8 * 10 I1 I1 WAVE LINGW m WRONS WAVE LENGTH IN MKROHS
  • 36. 1288 ANALYTICAL CHEMISTRY IW ~ ~ I4I Copuer dichromate, C uCr& .S H 2 0 10 1 II S P i P. i r A 1 m~ I M 5" 4a $ 1 10 I I I IO I I 1 0 1 I 4 S b 7 I I I 9 I 10 I I/ ,I I . I5 Ib 0 >odium molybdate. SaAfo0~2HzO .4 R M Iopdurn Iffl AT ludm lwo I -2 I 43:Im Potassium molybdate, KzMoo4.mo M P * I C.P. I / ~ i $@ i f P 2 Z" I !~ 10 P 20 Y : 1 I I J I 10 ~ O l o 1 I 4 S b 8 9 0 ,I 1 I1 I , IS b WAE W T H M UCRONS WAVE LENOlH IN W C U S , z .4 m nion u ni 4 I he1)tamolybdate -" . I / W ~NH~)s~Io;Ou.4HiO / s F - 5 - J 3 ,pf,M U x .R 1 I" I 4 10 10 0 0 1 1 4 5 b 7 8 V IO ! 1 1 I . I5 I6 WAVE LENOM IN MICRONS WAVE LENOW IN WCRONS WAVE NUMBfRS IN C M 5 lm Sodium tungstatr, S~~WOL~IIIO (0 c P. M 10 1 I I 5 b WAVE LEN6M IN MICRONS 7 D . ,I WAVE I 1 LEN6TH 1 1 11 1 MKRONI I . I5 Ib 0
  • 37. 1289 Potassium tungstate KzWO4 C.P Calcium tungstate Caw04 Pure WAVE NUMIIERS IN C M WAY€ WMERS IN CMI 15% I100 I1W IM IIW Iwp em 800 7m 15 .. I I Sodium permanganate. I48 -,i ,~ ~-- ,.- I4 NaMnOc3HzO , ~ ? bo C.P "i,: 1 10 I * ;, f i - W I 0 1 0 1 3 4 5 6 7 I 9 IO I I2 I3 I4 15 b WAVE LENGTH IN MICRONS WA- W l H IN Y C I C U S WAVE NUMlElS vi C M W A M NWlERS IN W-l yxxl UD) Mm 1m 2mo lxx) lux) lm l ,100 IIW Imo .m 8rn 7m b25 IW im Potassium permanganate, KhlnOi 10 I4E5 AR= 60 M4-5 40 10P 10 20 0 0 1 4 5 b 7 8 1, 11 11 I . I5 Ib WAVf LEN6TH IN MICRMIS W A M LWOTH IN MICRONS Calcium permanganate, Ca(MnOa)z.4Hn0 C P
  • 38. 1290 ANALYTICAL CHEMISTRY Bariuui permanganate Ra(3lnOi)z C.P. Sodium ferroeyanide, SaiFe(CN)s.lOH.O C.P Potas.ium ferrocyanide, KqFe(CX"i).3I1~0 hK sbx rom rn 2rm - 15m Im I Ca!cium ferrocyanide, I I54 CarFe(CN)s.l2H>O 4 10 I 10 1 f Ef M n I II , I i~ 60 Pure I I J I 10 5* I E J ,I IO * IIO I I l 0 I I O I 4 5 b 7 I 9 0 I I1 ,I I , I5 Ib Potassium ferricyanide, KsFe(CN)s AR
  • 39. V O L U M E 24, NO. 8, A U G U S T 1 9 5 2 1291 WAVE NUMBERS IN C M 1 WAVE NUMBERS IN C M 5WO IMo 1wP 2x4 1wP 1x4 I r n I1W IIW IIW lca VW aw 7W 615 Sodiuiii coliultiriitritr NarCo iSO.!* 157Iw f- ~ I I r - I 1 1 LO %K . I I I I I 1 e I I i - I 1 - ~ 10 AR Barium chluride, BaC12.2H10 .R i
  • 40. 1292 ANALYTICAL CHEMISTRY To explore this possibility, u Table IV. Use of Infrared Spectra in Qualitative Anal>-sis series of eight synthetic mixtures Final wa? prepared and analyzed in- Independrnt d n a l y - e . Cornbined Actual 10 . Eniiwion Infrared X-ray rinalysis Composition dependently by the three tech- 1 Sa SaHCOi WaHCOi niques. ( A photographic x-ra!. I.; CaCOr procedure was used.) This iri- Ca KSOi 4T14SOI NH4NO.I formation was then pooled, thr Very poor pattern SO,--- data were re-esamined, and ii Silica eel combined analysis was obtained. .II Silica gel B The test was not completel!- Ph AI fair because it, was known that x Na ICKr20; Sothing K*CI.yOi KilCrzOi infrared spectra have been oh-Yellon K N a S C S or N H i K S Very poor p a t t e r n NaSCN S-aSCX Cr Ifp(cloi)? AIg(ClO,)?" RSCS tained for nearly all the inor- Sulfide odor Pb 1 CaS0. L H j O ganic salts in the laboratory, and Ph Y 4 Cd SiL?HlOi SatBaO; IOtLO NazBIO; 10H?O that these same salts would heIellon- Bi CdS CdS used in making up the mixtures. B SaBiOx ! Sa ) I n addition, t,he components c ?P n-ere mixed in roughly equ:il amounts by bulk. The results are shoa-n in Table IT. The analysis of mis- .IO K*S?O6 Ca CaCOa ture 3 is discussed in greater I.; PhCrO4 detail below. I t is apparent S a ? KazSOr Y Sr 11 that no one of the techniques by Sh Caar PO, I 2 itself is powerful enough to give Si P a complete analysis of even these ca idealized unknoums. This is C P? Ba KaI.03 Ba(K0s partl)- because there was no prior Na A nitrate; prohahly Ba- PhSOI ? information about the caontent of I . isos)?. possibly SaSOz .1 ? 1 Other component(s) the samples, and therefore every SI.? 7 Possibilities: Another ni- possibility had to be considered. trate, SaBrOl. Sa?WO, or K?VOi. S a l l o O , or K l l o O ~ -1s xith any other anal) much more detailed and reliahlr Changing the positive ion may produce a dif- Cm-1ferent crystallin? arrangement, resulting in a 600 700 800 900 !OW 1100 1200 1300 1400different symmetry or iiitensity of the electrical 8 BO; 3 - 1 2field around a negative ion. 840: 3 Z Y - s A difference in t,he type or extent of hydration c coj a - ¶probably alters some of the frequencies. nco; 3 + SCN *A 011 the other hand Hunt, J-isherd, and Bonham( 5 ) found that for anhydrous carbonates there is SILICATES N NOi 4 1 L lan approximately linear relationship between the NO: II - NH; 17 Lwave length of the 11- to 12-micron band and the P Po: 9logarithm of the mass of the positive ion(s). Hunt HPOq 6 Ahas kindly pointed out that, the authors data H PO 5 2. 4 5 SO; 6 1 , -* stit his curve, with the exception of lit,hium car- soq IO A nso; 3bonate. I Characteristic Frequencies of Inorganic Ions. s20g s20j 2 szoi 2 5 - k i L *LP -Just as with sulfates and nitrates, most other poly- se sao; 2 l i -- 1atomic ions exhibit characteristic frequencies. s*o; 1These are summarized in Figure 2 . It is evident c uo; 3 I ClOi 4that they are distinctive and that they do not have Br Br 0; 3a great spread in wave numbers. I lo; 3 v voj 2 Qualitative Analysis. The usefulness of thesecharactei,istic frequencies in qualitative analysis is c, c,o; 8 , GE .o= ! 5 No h b o i 2obvious. It appeared that the infrared spectrum w wo; 3 Amight give, rapidly and easily, some information Mn MnOZ 4about the polyatomic ionE that are present in an un- 600 700 800 900 1000 1100 IPW 1300 1400knoivn inorganic mixture. If only one or two com-pounds are involved, it might, even be possible tonarrow the possibilities to a fex- specific salts. Italso seemed that a combination of infrared, emis-sion, and x-ray analysis might be very effective.Presumably emission analysis would determine themetals, infrared would say something about the Figure 2. Characteristic Frequencies of Polyatomic Inorganic Ionspolyatomic ions, and x-ray analysis might, give s.m, w. Strong, medium, weak * In most, but not all, examplestheir combinat,ion into specific salts. sp. Sharp ** Literature value
  • 41. V O L U M E 2 4 , NO. 8, A U G U S T 1 9 5 2 1293results can be obtained if there is some advance information tain possibilities for the x-ray analysis which greatly simplifyahout the nature of the unknowns. However, Table I- also its interpretation.shoTvL: that the three techniques are nicely complementary, and The advantages of this physical analysis include small sampkth:it together they are capable of providing a considerable amount requirement, reasonable time, and the ability t o determine theof information even when such prior knowledge is lacking. Al- actual compounds in man>- cases. I t is evident, too, that anythough thrre are two or three surprising errors in the combined or all of these three techniques are valuable preliminaries to a:inaI?ws, the over-all rwults are verj- encouraging. It is espe- ishemica1 analyis on an unknown material, especially a quanti-c-iall:. noteworth>-that the actual chemical compounds are giveir tative one.iri miny ca.vs. Variability of Spectra. It is not uncommon to find that the spectra of t,wo samples of the same com- WAVE N U M B S IN CM.1 pound are somewhat different. There 15W1400 1100 1100 IIW 1000 are several possible reasons for thin. IMP~RITIES. the spectra of sodium In cyanide, potassium cyanide, and potas- sium cyanate (Xos. 21, 22, 23) bands 2 ~ y have been marked that are plainly due to 60 2 bonates. 5 the corresponding carbonates and bicar- = CRYSTAL ORIESTATIOX. It is well knonm that the spectra of anisotropic y crystals depend on the orientation of 8 the sample. Consequently it is desirable io t o have completely random orientation of the crystallites to avoid such effects. This is an additional rewon for grinding L p - - 0 d the sample very finely. IO 11 12 I3 I4 I5 Ib 8 9 WAVE LENOTH IN MICRONS PoLnioRPmsai. Different crystalline forms of the same compound are often Figure 3. Portion of Infrared Spectrum of Lead S i t r a t e raDable of eshibitine slightly different ., . WAVE NUMBERS IN C M infrared spectra ( 2 1 1.. 1200 1100 1000 900 800 . A R Y I S G DXGREES HYDRATIOX. OF I , t> -4 I Several esamples of variable spectra have been otiserved, lor Lvhirh the muse is not definitely knonn. Tn-o different samples of potassium metabisulfite, KzS206, were esaniincd, and proved to have different, patterns of band intensities in one region (see curve 104). I n potassium carbonate there is a hand a t 880 c m - or a t 865 em.-, and in one spectrogram out of a total of ten hoth hands appear. There is no cleai correlation b e t w e n position and water content. Figure3 shows that the mode of preparation is important. It rompares the spectra of two lead nitrate samples, one prepared nornially with Sujol and one with very little Sujol. Differ- mces near 1300 rm.-l and 880 t o TOO cm-I are striking. This may be an orientation effect. X more baffling case of unexpected variation was ol)serveil 8 0 IO II 12 I3 with unknon-n S o . 3. In analyzing this by infrared, calcium WAVE LENGTH, 1.1 sulfate dihydrate was missed completely and magnesium per- Figitre 1 . Znonialous H a n d in Unknown 3 cahlorate -as reported in its place. The reason is brought out in I n vier caw (:a301 .hould be w r i t t e n C a S 0 ~ . 2 A ? 0 Figure 4. Pure calcium sulfate dihydrate has a single broad lmnd centered near 1140 cm.- (8.8 microns), whereas in inis- Isi)i-ii)i..ii, Ti:i.iisrui I.>. :in;ilysis of a conipletely S-I,:~?. ture 3 a strong doublet was observed a t 1080 and 1140 cni.-lunknowi sani~)Ie ~ ~ ~ i ~tiiffii.ult vhi~11 I oirii~~ thrr(J art nlow than two Thtx origin of the doublet was puzzling berause no other ($om-coniponc~ntr. It is not :i1)plii,:iI)lv t o noncrystallinc material.. poncnt of 3 but calcium sulfate has a band near here. Calcium( r f . unknown 2 ) and runs into troul)lc -ith substances that gaiii sulfate dihydrate had been run as a Nujol mull and mixture 301 lose water of hydi,ation readily. I n both c5ase.q infmred i i as a dry powder. Reversing each did not change their spectra.often a rcliable tool. Then calcium sulfate dihydrate was mised with each of the other Suhstanc~eslike metal osides, hytirosides, and sulfides gener- components in turn in the dry state, and the mixtures wre es-:illy h:ivcl no sharply defined infrared absorption from 2 t o 10 :mined as Nujol mulls. It vas found that the misture with i d e from possible water and 0-H bands. On the ot1rc.r ium thiocyanate gave a doublet. Tith sodium thio- y are often good samples for x-ray analysis (vf. cad- rj-anate there was also a doublet, but it TI-as much less pronounced.mium sulfide in unknown 4). It seems unlikely t,hat a chemical reaction between calcium The principal fault with emission analysis is its great sensitivity : sulfate dihydrate and potassium thiocyanate could account forit is frequently difficult t o distinguish between major components these peculiar results, bemuse the materials are in the solid state.:ind impurities. This fact arcounts for t,he surprising oversight Two other possible causes are changes in crystal structure, pre-01 cdcium in unknoivn 2 , and tungsten in 8. sumably caused by changing the hydrate, and an orientation Infrared examination has advantages over wet chemistry for effect. The following observat,ions seem to rule out variabledetecting the more unusual ions, such as BOz-, B407--, SzOs--, water content as a cause, and suggest the orientation effect.and S?Os--, since these are not included in the usual schemes of A calcium sulfate dihydratepotavsium thiocyanate mixture heated a t 170 C. for 3 days gave the two bands near 1100 em.- The proper sequence in using these techniques is the order Only one band was found after the salt plates were separatedcniission, infrared, and then s-ray. The first two present rer- and t h e mull e ~ p o s e d o air for an hour. t
  • 42. 1294 A N A L Y T I C A L CHEMISTRY Another portion of the same heated mixture was esposetl to air is evidence that these are 0-H stretching frequencies of theunder more humid conditions for an hour and then mulled in hydroxyl groups attachrd to the rentral atom.Nujol: two bands again resulted. This mull was opened to the air for an additional half hour, B.%RInf CHLORIDE.Several chlorides of the purely ionicand only one band was found. type were examined to observe how the hands due to watcr of hydrat,ion varied. Among these was barium chloride dihydrate -hen calcium sulfate dihydrate alone was heated overnight ( S o . 159). Surprisingly it has a strong band a t 700 cm.-,a t 170" C., three bands were found. The sulfate vibration absorb- which )-as totally unexpected but was c,onfirnied on a seconding near 1100 cni.-l is triply degenerate (12), and this may be a sample. I t is not attributable to carbonate or bicmhonate, hutcase of splitting of the degeneracy as a result of altering the crys- may tie due to a torsional motion of the w:itcr molecules in tlictal symmetry. Finally, potassium sulfate has exhibited a simi- lattice.lar variability in this same band, COMPLEX Ioss. The rliaracteristic. frequcncic:; carry over. ~ _-_ moderately wcll into roinplex ions-for exainple, pot ricyanitie has a band a t 2100 c m - l , and each of the rhree fer- Table V. Characteristic Frequencies i n Complex Ions rocyanides has one near 2010 cni-. This is obviously thc stretch- Complex I o n Simple Ion ing frequency of the C S - gioupj which in simplr ryanides is cm.- 1 cm.-1 Fe(CN)s--- 2100 cs- 2070-80 2070 to 2080 c i n - Other examples are shon.n in Tnl)le V. Fe(CKjc---- -2010 C?i - 2070-80 CoIiPoazrns WITH So ABSORPTIOS.Sickel hydroxide, fci~ic* Fe(CS)sNO-- 2140 cs - 2070-80 1923 XO (gac) 1878 oside, cadmium sulfide, and mercuric sulfide have no absorption 847 SOP 820-33 in the rock salt rcgion aside from watcr mid hydroryl hands. 1336 1235-80 1430 1328-80 ACLYO&LEl)(;I EX1 Ce(S0ds- - 745 SO,- i26-40 SO? 815-35 1080 ... The authors are inciel)ted to two colleagues, D. T. P i t i i i x i i 1260 and E. S. Hodge, for carrying out t h r x-ray and emission analy- 1420 13.40-80 1530 ses, respectively. Helen Golob prepared many of the curvrs. The Chemistry Departments of the University of Pittsburgh and Carnegie Institute of Technolog!- graciou3ly provided many I t is much safer to base arguments on the identity of spectra of t,he samples.than on their nonidentity. >lore empirical experience with thespectra of salts from many different sources should improve LITERATURE CITEDt,his situation. Colthup, N. E . , ,I. Optical S o c 40 397 (lCJ50. Miscellaneous Observations. AXOMALOUS DISPERSION UAN Glockler, G., Rec. M u d e r n Ihys., 15, 111 (1913).CHRISTIAXSEN FILTER EFFECTS. These have been adequately Hersberg. G., "Infrared and Raman Spectra of Polyatomic Molecules." Sew I-ork. D. Van Noatrand Co., 1945.described in the literature ( 5 , 9). Examples will be seen in the (4) Hihhen, J. H., "The Ranian Effect and Its Chemical -ippIica-steep-sided band of magnesium carbonate a t 3 microns (No. 13), tions." S e w York. Reinhold Puhlishinrr Coru.. 1939.of sodium thiocyanate near 5 microns (No. 26), and of potassium ( 5 ) Hunt, J . M., Wisherd. 11.P., and Ronhani, L. k., .isr., H i c v . , Cferricyanide near 5 microns ( S o . 155). 22, 1478 (1950). (6) Lecomte. J., AM^. Chim. d c t n . 2, 727 (1948). WATERAXD HYDROXYL BAXDS. The sharpness of the -ater (7) Lecomte, J.. Cahiers p h y s . . 17, I (1943!, and referelives citedbands near 3 and 6 microns in sodium and magnesium perchlo- therein.rate (Nos. 117, l l S ) , and the high value of their 0-H stretching (8) Sewman, It.. and €Idford, R. S.. .I. CAem. Phys.. 18, 1 2 i 6 , 1 9 1frequency ( >3500 cm.-I), are striking. Apparently there is (1950. (9) Price, TT. C.. and Tetlow, K. S . , I b i d . , 16, 1157 (194q).very little hydrogen bonding in these salts. It, is interesting t o (10) Schaefer, C.. and Xlatossi, F.. "Das ultrarote Spektrum," Her-note that animoniuni perchlorate (KO. 116), vhicah forins no lin, Julius Springer., 18:30; repi.inted by Edwards Bi,os., Inc.,hydrate, has a high K-H stretching frequency. Other compounds Ann Arbor, l f i c h .with sharp water bands are barium chlorate (KO.115) and 1)ai~iuni (11) Vagner, E. L., and I-Ioi,nig, D. F., . Chem. P h y s . . 18, 296, 305 J (1950).chloride (No. 159). (12) Wu, Ta-You, "Vibrational Spectra and Structure of Poly- I n bicarbonate there is a band a t 2500 to 2600 cni.-, in Iiisul- atomic Molecules," 2nd ed., .%nn .%I hor, Mich., J. W. ICcIwat ds.fate at 2300 to 2600 cm.- (very broad), and in HPOI--, H2P04-, 1946.HAs04--, and HP;IsO4-at about 2300 em.- (very broad). Their RECEITED review July 3 , 1931 for .ici.epted J u n e 7 , 19z2