Published on

these are my sourses

iused the book too

Published in: Education, Technology
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide


  1. 1. Drills & practice 1-deffention: Lacrosse By David G. Pietramala, Neil A. Grauer, Bob Scott http://books.google.com/books?id=9oycNars7zkC&pg=PA215&dq=drills+and+practice#PPT1,M1 P 2
  2. 2. Page 216 is not part of this book preview.
  3. 3. Page 215
  4. 4. http://olc.spsd.sk.ca/DE/PD/instr/strats/drill/index.html What is Drill & Practice? As an instructional strategy, drill & practice is familiar to all educators. It quot;promotes the acquisition of knowledge or skill through repetitive practice.quot; It refers to small tasks such as the memorization of spelling or vocabulary words, or the practicing of arithmetic facts and may also be found in more sophicated learning tasks or physical education games and sports. Drill-and-practice, like memorization, involves repetition of specific skills, such as addition and subtraction, or spelling. To be meaningful to learners, the skills built through drill-and-practice should become the building blocks for more meaningful learning. What is its purpose? Drill and Practice activities help learners master materials at their own pace. Drills are usually repetitive and are used as a reinforcement tool. Effective use of drill and practice depends on the recognition of the type of skill being developed, and the use of appropriate strategies to develop these competencies. There is a place for drill and practice mainly for the beginning learner or for students who are experiencing learning problems. Its use, however, should be kept to situations where the teacher is certain that it is the most appropriate form of instruction. How can I do it?
  5. 5. Drill and practice software packages offer structured reinforcement of previously learned concepts. They are based on question and answer interactions and should give the student appropriate feedback. Drill and practice packages may use games to increase motivation. Teachers who use computers to provide drill and practice in basic skills promote learning because drill and practice increases student acquisition of basic skills. In a typical software package of this type, the student is able to select an appropriate level of difficulty at which questions about specific content materials are set. In most cases the student is motivated to answer these questions quickly and accurately by the inclusion of a gaming scenario, as well as colourful and animated graphics. Good drill and practice software provides feedback to students, explains how to get the correct answer, and contains a management system to keep track of student progress. How can I adapt it? There has been a definite move away from paper-based drill and practice systems to computer-based systems. Drill and practice exercises with appropriate software can enhance the daily classroom experience. Given the personalized, interactive nature of most software, the computer can lend itself to providing extended, programmed practice. Used in small doses, electronic learning experiences can supplement any lesson effectively. Certain software allow students to reinforce specific skills in a certain subject area. Although not as easily integrated across the curriculum, drill and practice software can be useful. It usually comes in one of two formats. The first focuses on a specific subject area or a part of that area. The most common areas are reading and math. The second type attempts to improve skills in several areas of the curriculum. As with all other types of software, the teacher needs to determine if technology is the best way to work with the subject matter being dealt with. Games provide child centered activities to apply problem solving strategies as well as an opportunity to practice basic skills. Basic Skills Practice Cards can be designed to be used in many different formats. They can be used with a game board, in a lotto format or as flashcards. http://www.yourdictionary.com/practice practice definition prac·tice (prak′tis) transitive verb practiced -·ticed, practicing -·tic·ing 1. to do or engage in frequently or usually; make a habit or custom of to practice thrift 2. to do repeatedly in order to learn or become proficient; exercise or drill oneself in to practice batting 3. to put into practice; specif., a. to use one's knowledge of; work at, esp. as a profession to practice law b. to observe, or adhere to (beliefs, ideals, etc.) to practice one's religion
  6. 6. 4. to teach or train through practice; exercise Etymology: ME practisen < MFr practiser, altered < practiquer < ML practicare < LL practicus < Grpraktikos, concerning action, practical < prassein, to do intransitive verb 1. to do something repeatedly in order to learn or acquire proficiency; exercise or drill oneself to practice on the organ 2. to put knowledge into practice; work at or follow a profession, as medicine, law, etc. 3. to scheme; intrigue ARCHAIC noun 1. the act, result, etc. of practicing; specif., a. a frequent or usual action; habit; usage to make a practice of being early b. a usual method or custom; convention the practice of tipping for services 2. a. repeated mental or physical action for the purpose of learning or acquiring proficiency b. a session of engaging in such action cheerleading practice c. the condition of being proficient or skillful as a result of this to be out of practice 3. the doing of something as an application of knowledge the practice of a theory 4. a. the exercise of a profession or occupation the practice of law b. a business based on this, often regarded as a legal property to buy another's law practice 5. intrigue, trickery, a scheme, etc. ARCHAIC 6. the various procedures involved in legal work, in and out of courts LAW practice synonyms practice n. 1. A customary action habit, usage, use, wont; see custom 2, tradition 1. 2. A method mode, manner, fashion; see method 2, system 2.
  7. 7. 3. Educational repetition exercise, drill, repetition, iteration, rehearsal, recitation, preparation, study, dis cipline, application,training, workout, prepping*. 4. A practitioner's custom work, patients, clients, clientele, professional business. See syn. study at habit, practice, habit, practice, v. practice v. 1. To seek improvement through repetition drill, train, exercise, study, rehearse, repeat, recite, iterate, go over, run through, keep in practice, work at, accustom oneself, habituate oneself, prepare, warm up, work out, polish up*, sharpen up*,woodshed*, build up*. * 2. To employ one's professional skill function, work at, follow, put into effect, hang out one's shingle, employ oneself in, practice medicine, practice law. practice implies repeated performance for the purpose of learning or acquiring proficiency he practiced on the violin every day, practice makes perfect; exercise implies putting into active use to exercise one's witsand often refers to activity, esp. of a systematic, formal kind, that trains or develops the body or mindgymnastic exercises; drill suggests disciplined group training in which something is taught by constant repetition to drill a squad, an arithmetic drill Webster's New World Roget's A-Z Thesaurus Copyright © 1999 by Wiley Publishing, Inc., Cleveland, Ohio. Used by arrangement with John Wiley & Sons, Inc. practice usage examples
  8. 8. converse of object promote: Guide promotes best practice by all those • involved in managing the coast in England. adjective modifier • good: There are many examples of good practice being carried out by them on a daily basis. modifies a noun nurse: Please discuss your travel health requirements with your regular • family doctor or practice nurse. noun used with modifier GP: Many already work with NHS trusts, hospices and GP practices. • http://www.horton.com/html/portfoliodrillandpractice.aspx Drill-and-practice activities Drill-and-practice activities build on a simple testing cycle. The system presents a problem, which the learner tries to solve. The system provides feedback on the learner's solution before posing another problem. Then the cycle repeats. The Practice recognizing nautical flags activity teaches learners to recognize nautical flags. This part of the exercise teaches the learner to recognize individual flag patterns and associate them with letters of the alphabet. The learner views a grouping of flags and then types in the equivalent letters. After entering the answer, the learner clicks Check to see if the answer was correct. Then, the learner can click Next to see another problem. This example has another feature. Learners can enter a word, then click Translate to see what flag configurations spell that word. Here is another example of a drill-and-practice activity. This one teaches learners to understand the semaphore flag system. It is built using the same template as the nautical flag example. About the examples These example were built with Adobe Dreamweaver using JavaScript.
  9. 9. Business Definition for: Drill Down • to access data or information organized in hierarchical form by starting from general information and moving through increasingly detailed data Wiktionary Definition for: Drill Down • to examine information at another level or in greater detail; especially in a database, to navigate to a more detailed level or record • Ex:''From the employee list, you can drill down to find addresses and pay history.'' • (marching band) an internal competition used to practice marching commands, in which the last person caught improperly executing a command wins • Ex:''We knew someone had lost when the last two people in the drill down ended up facing each other.'' Additional Resources Advanced Drill String Metallurgy Provides Enabling Technology for Critical Sour Drilling This paper provides background information on the evolution of sour service drill pipe, introduces advancements in sour service drill pipe metallurgy and manufacturing technology, discusses recently developed specifications for sour service drill pipe and presents case histories where various generations of sour service drill pipe have been successfully used. Tags: Metallurgy, Service, Grant Prideco, Manufacturing White papers 2002-01-22 Drill sergeants get trophy at next small arms championships Drill Sergeants Get Trophy at Next Small Arms Championships--The U.S. Army Marksmanship Unit has announced that there will be a new trophy awarded at the 2006 All-Army Small Arms Championships to be conducted in March. The High Drill Sergeant Trophy will be awarded to the top scoring drill sergeant... Tags: U.S. Army Research articles 2005-09-01 Coolant-fed drill for deep holes—Mitsubishi Materials USA, Booth E-2126 The company introduces the Miracle W Star 8 X D coolant-fed drill. Cutting edge and flute design features achieve drilling depths of eight times the drill diameter. The deep-hole drill may he used on machining centers that do not require high-pressure coolant as a result of excellent chip control and... Tags: drill, Mitsubishi Corp. Research articles 2004-09-01
  10. 10. Moneta - Excellent January 1997 Michaud Drill Results TIMMINS, ONTARIO--BUSINESS WIRE--Feb. 14, 1997--(TSE ME.) Moneta Porcupine Mines Inc. (quot;Monetaquot;) announced initial 1997 drill results on the Michaud Properties in which Barrick Gold Corp. is earning 60 percent - 70 percent interest by the expenditure of $6.5 million. The 1997 drill... Tags: Business Wire, continuity, Ontario, Strategy Research articles 1997-02-14 Titanium Drill Pipe for Ultra-Deep and Deep Directional Drilling This paper discusses the modeling and analysis of 5, 5-1/2, 5- 7/8 and 6-5/8 in. titanium drill pipe in ultra-deep and deep directional drilling programs. Using a computer based drill string simulator, modeling a representative deep directional well, titanium drill strings were compared to the same size steel drill strings... http://dictionary.bnet.com/definition/drill+down.html An Introduction to Computer Based Instruction There are a variety of terms used to describe the educational use of computer and each has a slighlty different meaning. Computer Assisted Learning (CAL) is an all encompassing term to describe any educational use of computers. Such uses can be divided into three main groups: (1) when the computer is used as a tool (word processor, data base, spread sheet, and graphics application); (2) when the student 'teaches' the computer, for example, by issuing a set of instructions to the computer through a programming language such as Logo, and (3) when the computer delivers some instructional material (Taylor 1980). This latter situation is termed Computer Based Instruction (CBI) or Computer Assisted Instruction (CAL) which is an older term than CBI. This paper will only deal with the third aspect of the use of computers in education, computer based instruction. Computer Based Instruction has traditionally been composed of four main components, Drill and Practice, Tutorials, Games and Simulation and Modelling. Modern technologies have added to these Hypertext, Hypermedia
  11. 11. and Multimedia. These new technologies will be deal with in detail later in the paper. Drill and Practice was probably the most extensively used CBI application in the early days of the educational use of computers. It can be argued that there were two main reasons for this; (1) they were comparatively easy to program, which was important as there was little available commercial software and so teachers who wished to use computers had often to write much of the software themselves; (2) the programs could show off effectively the capabilities of the computer and this was important for the computer-enthusiast teacher as it could help to win over colleagues to the cause, and hopefully, result in more money being spent on computers in schools. A drill and practice program typically deals with material that has already been taught. The student is presented with a task, often selected randomly, and feedback is offered immediately it is completed. A well constructed program of this type should be able to keep pace with the student by offering remedial or advanced level if and when they become necessary (Hannafin and Peck 1988, 4). There is a place for drill and practice mainly for the beginning learner or for students who are experiencing learning problems. Their use, however, should be kept to situations where the teacher is certain that they are the most appropriate form of instruction. Tutorials attempt to teach new materials. Typically they present information and then question the user to ascertain the level of learning achieved. The program should be able to monitor the student's progress and to present remedial or advanced levels if and when required. The tutorial is based on the Socratean model but Merrill (Twitchell 1991, 35) cautions that quot;Socrates is highly over-rated. We give too much credit to tutoring as a modelquot;. From a practical point of view, the computer tutorial is very limitted in its ability to assess the level of understanding of the student. In the classroom situation, when teachers ask questions, they can assess the level of understanding of the topic, the degree of comfort with the material, etc., by not only listening to the answer given, but also by observing the speed with which it is given, the degree of hesitation, the body language of the student, and so on. The computer, however, is only capable of responding to the answer given, usually by typing characters on a keyboard. A teacher can accept a slightly wrong answer and probe deeper to get the correct one. The computer can normally only respond to a small number of possible answers and often cannot cope with a slightly incorrect answer; for example, if the expected answer is apples and the student enters apple, the computer will frequently reject it which
  12. 12. can result in a considerable degree of frustration on the part of the student. There is also a problem from the designer's point of view; after a screen of information has been presented, it is difficult to determine which question will demonstrate an understanding of all the information that has been given. Research is being conducted in the production of Intelligent Tutoring Systems which should overcome this problem, but these will depend upon artificial intelligence (AI), however, some people state that the true meaning of AI is always impossible. Educational games are normally placed in a group of their own, but in practice it is often difficult to differentiate between games, drill and practice programs or simulations. It is possible to have a game and a drill and practice program that contain the same content, but which have a different end result For example, the game Maths Invaders has the same content as a drill and practice program in that users are asked to complete a number of sums, but the outcome is different as when a question is answered correctly, as in the game the student gets to shoot down an alien. A game can also have the format of a simulation but the major difference between the two is that a simulation normally models a real life situation whereas a game can model an imaginary one. Games also have a place to play in the classroom especially as a way of increasing the motivational levels of students. However, they should be used with care. Many students, especially boys, spend a lot of time playing computerised games and it is important that the classroom computer is not seen solely as another games machine. Simulation programs normally model some real life situation and they enable students to manipulate and experiment with it. The normal justification for using them is in situations where the real thing is too expensive, too dangerous or too time consuming. For example, students would not normally be able to observe the evolution of a species as it would take too long but the whole process could be observed in a very short period of time on a computer simulation. While simulations have a potential to be useful in the classroom, they do have some draw backs. These will be considered in more detail later. http://scs.une.edu.au/CSIT315/Theory/docs/573_1.html ypes of Computer Technology Computers have been described as used in three ways as a tutor, tool, or a tutee (Taylor, 1980).
  13. 13. 1. Tutorial software assists students as a quot;tutorquot; to help them learn specific objectives. 2. Software quot;toolsquot; help students present their work for example by using word-processing, database, or spreadsheet programs. 3. quot;Tuteequot;, has been described as a situation where the students teach the computer for example by using programming software. Reeves and Jonasssen, 1996 say that when using the quot;computer-as-tuteequot; approach, students develop higher-order thinking skills and creativity by teaching the computer to perform tasks. Tutorial / Drill-and-Practice Software Increased accountability has put more pressure on teachers to meet curriculum outcomes and to ensure student performance (Marshall and Hillman, 2000). Tutorial and drill-and-practice software can be very helpful in this regard to help students master basic skills and is based on behaviorist theory. Tutorials present a new concept and provide step by step instructions on how to complete a certain objective, for example a tutorial in a new software program. Drill-and- practice software reinforces basic skills for example spelling words, development of reading vocabulary, or typing programs. Spelling, vocabulary, and typing are important skills that would enhance student performance when composing independent written work. Wepner, Valmont, and Thurlow (2000) say that the majority of experts agree that typing instruction should occur around grade five and that primary students should become familiar with letter keys, the return key, the space bar, and the home row. There is also a wide variety of drill-and- practice software available for improving letter recognition and for developing phonics skills (Wepner et al., 2000). Enhancing student’s letter knowledge and phonological awareness skills is a priority goal for kindergarten students and is a key to success in learning to read (National Research Council, 1998). Lowe (2001) defines computer-based education as the process or management of instruction that uses a microcomputer as the medium. Lowe (2001) says that: The demands of World War II helped accelerate the development of the • computer and computer-based education came about as a means of providing cost efficient training to the military during the Vietnam War. Behavioral theories of learning influenced early computer-based education • but as computer technology became more sophisticated, software changed from focusing on behavioral theories to cognitivist theories.
  14. 14. Computer-based education provides an alternative way for learners to • reach their goals independently in self-directed and self-paced learning experience. Computer-based education positively affects student achievement when • compared to traditional classroom instruction although it should only be used to supplement traditional instruction and not replace it. Schery and O'Connor (1997) discuss the use of computer based intervention to teach language and communication skills to students with disabilities. They found that the students attained the most rapid vocabulary gains during the time of additional computerized instruction. The authors recommend technology because computers are: non-judgmental • provide attention to the student at the student's own pace • provide immediate reinforcement • very motivational because of the animation and colour graphics used in • the software synthesized speech has also been found extremely useful for non-verbal • students because it provides a means for verbal output computerized instruction using groups of two students also helped • develop social skills, turn taking, and listening skills. Clements (as cited in Loveless and Dore, 2002) noted that education was at a crossroads trying to decide which path to take in the use of computers in schools. The drill-and-practice, self paced, one-on one approach to reinforce basic skills had limited uses and outcomes in terms of educational criteria. Drill-and-practice was intended for the use of computers as an add-on to traditional classroom instruction. It was not learning by doing and Loveless and Dore (2002) say there is a need to use computer technology in new and dynamic ways. Drill-and-practice did have some merit in the past in that it motivated • students to finish their work but then only the best students got to use the
  15. 15. computers. Students who struggle with basic skills are the ones who need to be given the opportunity to use drill-and-practice software. When using tutorial/drill-and-practice software teachers should ensure that it: is developmentally appropriate for the student • reinforces skills already taught • is based on the individual student's needs • meets the curriculum outcomes (Labbo, Leu, Kinzer, Teale, Cammack, • Kara-Soteriou, & Sanny, 2003) provides a positive learning experience for the student • provides appropriate stimuli, response required, and reinforcement for the • student (Schery & O'Connor, 1997) Technical Literacy One other advantage of this type of software is that it is valuable in helping students become technically literate. Labbo et al. (2003) suggest that teachers observe students using computer programs to get a sense of their capabilities with technology. Teachers can observe how well the students understand and follow the screen directions and whether they are familiar with the computer keyboard. Computer games can also be a useful introduction to computers in this regard. The authors say that by the end of grade two students should be able to independently use educational software. http://www.cdli.ca/~dsulliva/technology/new_page_4.htm Games/Drill and Practice in Grades 6-8 Can students improve their mathematics achievement by using computers and software programs in the classroom? The following examples of research address three of the five content standards recognized by the National Council of Teachers of Mathematics (numbers and operations, algebra, and geometry) and, taken together, the evidence in the articles suggests that the
  16. 16. following approaches may work for improving mathematics achievement for students in grades 6-8. Computerized drill and practice Bahr & Reith (1989) conducted a study with 50 underachieving, mixed socio- economic status students with learning disabilities who received special education and related services. The study compared the students' math achievement after they participated three times per week for three weeks in either a computer-based drill and practice intervention, instruction using arcade-style games like Math Blaster, or traditional non-computer-based instruction. Mathematics achievement was measured using multiplication tests and the findings were mixed. In one school, mathematics performance was the same for each group after the three-week period; in another school, students in the instructional games condition did better than students in the computerized drill and practice condition. In a third school, students in both the computerized drill and practice condition and the instructional games condition did better than students in the traditional instruction condition, but mathematics achievement was better for students in the instructional condition than the computerized drill and practice condition. These findings suggest that instructional games and computerized drill and practice are promising for the classroom, but it should be noted that the study had a flawed design, which may have affected the findings. Christensen & Gerber (1990) also studied the effects of computerized drill and practice on mathematics achievement, but in this case, all students worked on the computer. In their study, 30 general education students and 30 students with learning disabilities of average and underachieving ability levels participated in one of two groups for six minutes per day for 13 days. The first utilized computerized drill and practice that was embedded in computerized games such as Alien Addition; the second engaged in standard drill and practice on the computer (no arcade graphics or sounds). Mathematics achievement was then measured with performance on basic addition facts that used addends of one through ten presented three ways: in a timed written addition test, an oral addition test with questions on the computer, and a keyboard addition test. The authors' results were very clear for students with learning disabilities—performance was better on the standard drill and practice program than the game-like drill and practice program, suggesting that distractibility can be an issue. For students without
  17. 17. disabilities, written test performance was better for students who participated in the standard drill and practice program than the game-like program, and there were no achievement differences between the conditions on the keyboard and oral language tests. Okolo (1992) wanted to find out whether students' preferences and mathematics achievement were different when they participated in either a computerized drill and practice program or a traditional non-computerized drill and practice program. Students with learning disabilities participated in nine 20-minute sessions each week in either the computerized or non- computerized drill and practice program. The students' attitudes towards mathematics were measured with a survey, and their mathematics achievement levels were measured with a test designed to assess automatic retrieval of facts. Although both groups' mathematics achievement improved, motivation was slightly higher in the computerized drill and practice condition. Computerized games In a study that looked at computerized games and students' mathematics achievement, Malinow & Black (2003) studied how 11 students with learning disabilities attending a private school performed on a test of conceptual and procedural proportion word problems after participating for one day with a computer program called Proportion Power. The computer program is an interactive, web-based program designed to teach proportion problems. The authors found that less advanced students increased their procedural knowledge after using the program, whereas more advanced students increased their conceptual knowledge. It is important to note, however, that the intervention was of limited time (one day) and the findings are not based on a rigorous research design. References Bahr, C.M. & Reith, H.J. (1989). The effects of instructional computer games and drill and practice software on learning disabled students' mathematical achievement. Computers in the School, 6(3/4), 87-101. Christensen, C., & Gerber, M. (1990). Effectiveness of computerized drill and practice games in teaching basic math facts. Exceptionality, 1(3), 149-165.
  18. 18. Malinow, A. & Black, J. Integrating a multiple-linked representational program into a middle-school learning disabled classroom. Proceedings from the 2003 International Conference on Computing in Education sponsored by the Asia-Pacific Chapter of the Association for the Advancement of Computing in Education (AACE): Hong Kong. Okolo, C. (1992). The effects of computer-assisted instruction format and initial attitude on the arithmetic facts proficiency and continuing motivation of students with learning disabilities. Exceptionality, 3, 195-211. http://www.cited.org/index.aspx?page_id=92