0
Spatialization Methods: A Cartographic Research Agenda for Non-geographic Information Visualization
GIScience Information visualization ?
Data Structured Unstructured Semi structured <paper> <author> Skupin </author> <content> . . . 6XPPDUDQG2XWORRN 7KLV SDSHU...
Methods - MDS
Methods - SOM
Methods – Spring models
Methods - PFN
Methods – Tree maps
Traditional post-processing [1,2] [2,34] . . .
GIScience post-processing [1,2] [2,34] . . .
Combining knowledge
Cognitive aspects + [1,2] [2,34] . . .
Possible applications
Quality aspects
Quality aspects
Road ahead GIScience Information visualization
Upcoming SlideShare
Loading in...5
×

Presentation Skupin Research Agenda Short Vers

347

Published on

Presentation of article by Skupin and Fabrikant.

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
347
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Transcript of "Presentation Skupin Research Agenda Short Vers"

    1. 1. Spatialization Methods: A Cartographic Research Agenda for Non-geographic Information Visualization
    2. 2. GIScience Information visualization ?
    3. 3. Data Structured Unstructured Semi structured <paper> <author> Skupin </author> <content> . . . 6XPPDUDQG2XWORRN 7KLV SDSHU KDV GHPRQVWUDWHG WKDW LQFUHDVLQJ LQYROYHPHQW LQQRQJHRJUDSKLF LQIRUPDWLRQ YLVX DOL]DWLRQFDQSURYLGHVFDUWRJUDSKDQG*,6FLHQFH ZLWK D XQLTXH RSSRUWXQLW WR HQGHDYRU :KDW HPHUJHV IURP WKH GHVFULSWLRQ RI SULQFLSDO DSSURDFKHV VSHFLILF PHWKRGV DQG LPSOHPHQWDWLRQ H[DPSOHV LV D UHVHDUFK DJHQGD WKDWDFFRPPRGDWHVDEURDGVSHFWUXPRIRXUGLVFL SOLQHESRVLQJDUDQJHRIUHVHDUFKFKDOOHQJHV 7KHILUVWDQGIRUHPRVWFKDOOHQJHLVWRDFNQRZOHGJH WKHUHOHYDQFHRIFDUWRJUDSKLFH[SHUWLVHEHRQGWKH YLVXDOL]DWLRQRIJHRJUDSKLFSKHQRPHQD,WLVLPSRU WDQWWRVHSDUDWHWKHPXOWLWXGHRIFDUWRJUDSKLFDQG *,6FLHQFHPHWKRGVIURPWKHJHRJUDSKLFUHDOLWWR ZKLFKWKHVHKDYHWUDGLWLRQDOOEHHQDSSOLHG7KLV UHTXLUHV DPRUH WKRURXJK XQGHUVWDQGLQJ RI WKH HVVHQFH RI FDUWRJUDSKLF DFWLYLW 6LQFH WKH ULVH RI DQDOWLFFDUWRJUDSKHKDYHNQRZQWKDWFDUWRJUD SKLVPRUHWKDQDQWKLQJHOVHDERXWVSDWLDOGDWD WUDQVIRUPDWLRQ 7REOHU:LWKFXUUHQWJHRYL VXDOL]DWLRQDSSURDFKHVZHQRZKDYHWKHQHFHVVDU PHWKRGVLQKDQGWRSURYLGHNQRZOHGJHWUDQVIHULQWR UHODWHG UHVHDUFK FRPPXQLWLHVZLWKKLJKO LQWHUDF WLYH WRROV EDVHG RQ VROLG VHPDQWLF IRXQGDWLRQV 0DF(DFKUHQ ,QFUHDVHGDZDUHQHVVRIDQGHPSLULFDONQRZOHGJH DERXWVSDWLDOFRJQLWLRQLQFOXGLQJFXUUHQWZRUNE *,6FLHQWLVWVRQJHRJUDSKLFRQWRORJQHHGV WREH LQWHJUDWHGLQWRVSDWLDOL]DWLRQUHVHDUFK&XUUHQWZRUN DWWKH8QLYHUVLWRI&DOLIRUQLDDW6DQWD%DUEDUDDQG QHHGWRGLVFRYHUDQGRUFRQYHKLJKGLPHQVLRQDO VWUXFWXUHV EWKHQHHGWRGHWHUPLQHWKHDSSURSULDWH XVHRIGLPHQVLRQDOLWUHGXFLQJWHFKQLTXHVWKDWDOZDV OHDGWRDGLVWRUWLRQRIKLJKGLPHQVLRQDOUHODWLRQVKLSV DQG FWKHQHHGWRHPSORYLVXDOL]DWLRQWHFKQLTXHV WKDWDUHLQWXQHZLWKRXUXQGHUVWDQGLQJRIKXPDQ FRJQLWLRQRIWKHUHDOZRUOGDQGJHRJUDSKLFPDSV,W LVLQWKLVFRQWH[WWKDWFDUWRJUDSKLFUHVHDUFKKDVWR FULWLFDOOHQJDJHWKHYDULRXVLQIRUPDWLRQYLVXDOL]DWLRQ PHWKRGVDQGVVWHPVWKDWKDYHEHHQSXWIRUZDUG $QRWKHUSURPLVLQJYHQWXUHOLHVLQLQYHVWLJDWLQJWKH GHJUHH WR ZKLFK SURSRVHG LQIRUPDWLRQ YLVXDOL]D WLRQSULQFLSOHVDQG WHFKQLTXHVPDEHDSSOLFDEOH WRJHRJUDSKLFGDWD:RUWKZKLOHUHVHDUFKWRSLFVLQ WKLVDUHDUDQJHIURPVSHFLILFYLVXDOL]DWLRQPHWKRGV WRWSRORJLHVRIVXFKWHFKQLTXHV $GLIIHUHQWDVSHFWRIDQHYROYLQJUHVHDUFKDJHQGD UHODWHVWRKRZFDUWRJUDSKHUVDQGRWKHU*,6FLHQWLVWV FDQDFWXDOOPDNHWKHLPSDFWRIWKHLUFRQWULEXWLRQV IHOW7KHPDLQ WKUXVWRI LQIRUPDWLRQYLVXDOL]DWLRQ UHVHDUFKLVKDSSHQLQJRXWVLGHRI*,6FLHQFH7KHUHIRUH WKH WUDQVIHU RI FDUWRJUDSKLF H[SHUW NQRZOHGJH LV GHSHQGHQWRQDQLQWLPDWHLQYROYHPHQWLQWKHUHOHYDQW UHVHDUFKFRPPXQLWLHV7KLVUHIHUVSDUWLFXODUOWRWKH FRUHLQIRUPDWLRQYLVXDOL]DWLRQFRPPXQLWKLFKLV FXUUHQWOGRPLQDWHGEFRPSXWHUVFLHQWLVWVHYHQ WKRXJKLWLVVWLOODRXQJDQGHYROYLQJILHOG &DUG HWDO)XWXUHHQJDJHPHQWLQVXFKFRQIHUHQFH VHULHV DV WKH ,((( 6PSRVLXP RQ ,QIRUPDWLRQ 9LVXDOL]DWLRQ ,QIR9LVRU WKHDQQXDO ,QIRUPDWLRQ 9LVXDOL]DWLRQ &RQIHUHQFH LQ /RQGRQ ZRXOG EH SDUWLFXODUORUWKZKLOH:LWKIHZH[FHSWLRQV VXFK DVWKHJHRYLVXDOL]DWLRQHIIRUWVDWWKH3HQQVOYDQLD +
    4. 4. Methods - MDS
    5. 5. Methods - SOM
    6. 6. Methods – Spring models
    7. 7. Methods - PFN
    8. 8. Methods – Tree maps
    9. 9. Traditional post-processing [1,2] [2,34] . . .
    10. 10. GIScience post-processing [1,2] [2,34] . . .
    11. 11. Combining knowledge
    12. 12. Cognitive aspects + [1,2] [2,34] . . .
    13. 13. Possible applications
    14. 14. Quality aspects
    15. 15. Quality aspects
    16. 16. Road ahead GIScience Information visualization
    1. A particular slide catching your eye?

      Clipping is a handy way to collect important slides you want to go back to later.

    ×