Presentation at Accuracy 2012

477 views
419 views

Published on

Apresentação realizada no Accuracy 2012, em Florianópolis.

Published in: Education, Technology, Spiritual
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
477
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Presentation at Accuracy 2012

  1. 1. Larger geologiccomplexity implieslarger uncertainty Alessandro Samuel-Rosa, UFRRJ Ricardo Simão Diniz Dalmolin, UFSM Pablo Miguel, UFSM Florianópolis, SC, Jul 11th 2012
  2. 2. Larger geologic complexity implies larger uncertaintyAlessandro Samuel-Rosa, Ricardo Simão Diniz Dalmolin & Pablo Miguel Tectonic setting Deformation GEOLOGIC COMPLEXITY = Distribution of faults and lithological Sedimentation boundaries as a patterns function of scale 79 Igneous events Au Hodkiewicz (2003); Ford and Blenkinsop (2008); Ford and McCuaig (2010)
  3. 3. Larger geologic complexity implies larger uncertaintyAlessandro Samuel-Rosa, Ricardo Simão Diniz Dalmolin & Pablo Miguel Tectonic setting Deformation GEOLOGIC COMPLEXITY = Uncertainty = Sedimentation Lack of knowledge patterns ? Igneous events Hodkiewicz (2003); Ford and Blenkinsop (2008); Ford and McCuaig (2010)
  4. 4. Larger geologic complexity implies larger uncertaintyAlessandro Samuel-Rosa, Ricardo Simão Diniz Dalmolin & Pablo Miguel 147 – 478 m
  5. 5. Larger geologic complexity implies larger uncertaintyAlessandro Samuel-Rosa, Ricardo Simão Diniz Dalmolin & Pablo Miguel Small complexity (volcanic rocks) Large complexity (volcanic and sedimentary) Small complexity (sedimentary rocks)
  6. 6. Larger geologic complexity implies larger uncertaintyAlessandro Samuel-Rosa, Ricardo Simão Diniz Dalmolin & Pablo Miguel - 339 sampling points (0 – 20 cm) - soil and land use survey (purposive sampling) - particle-size distribution - transformed to additive log-ratios - terrain attributes - 10 m DEM from topographic maps - multiple linear regression models - stepwise + repeated 10-fold cross-validation - R (packages stats, base and caret) - GRASS, QuantumGIS and SAGA GIS
  7. 7. Larger geologic complexity implies larger uncertaintyAlessandro Samuel-Rosa, Ricardo Simão Diniz Dalmolin & Pablo Miguel Table 1. Confusion matrix for the whole study area Reference Prediction User accuracy Sedimentary Volcanic Sedimentary 132 16 0.8000 Volcanic 33 158 0.9080 Mapper accuracy 0.8919 0.8272 Accuracy 0.8555 (95% CI: 0.8134 – 0.8911) NIR 0.5133 (P-Value [Acc > NIR]: < 2e-16) Kappa 0.7099 (Mcnemars Test P-Value: 0.02227)
  8. 8. Larger geologic complexity implies larger uncertaintyAlessandro Samuel-Rosa, Ricardo Simão Diniz Dalmolin & Pablo Miguel Table 2. Confusion matrix for the small complexity area Reference Prediction User accuracy Sedimentary Volcanic Sedimentary 95 0 1.0000 Volcanic 0 109 1.0000 Mapper accuracy 1.0000 1.0000 Accuracy 1.0000 (95% CI: 0.9821 – 1.0000) NIR 0.5343 (P-Value [Acc > NIR]: < 2.2e-16) Kappa 1.0000 (Mcnemars Test P-Value: NA)
  9. 9. Larger geologic complexity implies larger uncertaintyAlessandro Samuel-Rosa, Ricardo Simão Diniz Dalmolin & Pablo Miguel Table 3. Confusion matrix for the large complexity area Reference Prediction User accuracy Sedimentary Volcanic Sedimentary 37 16 0.5286 Volcanic 33 49 0.7538 Mapper accuracy 0.6981 0.5976 Accuracy 0.6370 (95% CI: 0.5499 – 0.7180) NIR 0.5185 (P-Value [Acc > NIR]: 0.003605) Kappa 0.2798 (Mcnemars Test P-Value: 0.022271)
  10. 10. Larger geologic complexity implies larger uncertaintyAlessandro Samuel-Rosa, Ricardo Simão Diniz Dalmolin & Pablo MiguelTable 4. Mean ± standard error of absolute prediction residuals Geologic Clay (%) Silt (%) Sand (%) complexity Small 5.20 ± 0.31 6.79 ± 0.37 7.60 ± 0.44 Large 5.19 ± 0.35 12.55 ± 0.67 15.80 ± 0.91 Kappa = 1.0000 60% of the variance Kappa = 0.2798 ln(clay/sand) = – 1.0027474 + 0.0081838 ELEV – 0.0413414 SLOPE – 0.9702653 WET – 0.0107230 CONV ln(silt/sand) = – 0.9136230 + 0.0090393 ELEV – 0.0278960 SLOPE – 0.0151896 CONV – 0.9682048 WET
  11. 11. Larger geologic complexity implies larger uncertaintyAlessandro Samuel-Rosa, Ricardo Simão Diniz Dalmolin & Pablo Miguel Small complexity Large complexity Small complexity
  12. 12. Larger geologic complexity implies larger uncertaintyAlessandro Samuel-Rosa, Ricardo Simão Diniz Dalmolin & Pablo MiguelGeology- Maciel Filho (1990)- Sub-horizontal (5º)- Uncertainty?Elevation- Brazilian Army(1970s)- Aerial photography- Uncertainty?
  13. 13. Larger geologic complexity implies larger uncertaintyAlessandro Samuel-Rosa, Ricardo Simão Diniz Dalmolin & Pablo Miguel Conclusions ● Yes... we can build predictive models using terrain attributes (and other environmental co-variates) ● However... large geologic complexity = large uncertainty = large prediction errors ● Therefore... improving predictive models depends on improving geologic information available
  14. 14. Larger geologic complexity implies larger uncertaintyAlessandro Samuel-Rosa, Ricardo Simão Diniz Dalmolin & Pablo Miguel Future work ● What is the “required” level of accuracy of the prediction models? ● Do the users of soil information understand “uncertainty”? Traditional soil maps “seem” to be very accurate! ● Give an especial attention to the uncertainty of the environmental co-variates (know where we are going to “fail”)
  15. 15. Larger geologiccomplexity implieslarger uncertainty alessandrosamuel@yahoo.com.br dalmolinrsd@gmail.com tchemiguel@yahoo.com.br Florianópolis, SC, Jul 11th 2012

×