• Like
Tabla de verdad
Upcoming SlideShare
Loading in...5
×

Tabla de verdad

  • 81 views
Uploaded on

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
81
On Slideshare
0
From Embeds
0
Number of Embeds
2

Actions

Shares
Downloads
1
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Tabla de Verdad La tabla de verdad es un instrumento utilizado para la simplificación de circuitos digitales a través de su ecuación booleana. Todas las tablas de verdad funcionan de la misma manera sin importar la cantidad de columnas que tenga y todas tienen siempre una columna de salida (la última columna a la derecha) que representa el resultado de todas las posibles combinaciones de las entradas. El número total de columnas en una tabla de verdad es la suma de las entradas que hay + 1 (la columna de la salida). El número de filas de la tabla de verdad es la cantidad de combinaciones que se pueden lograr con las entradas y es igual a 2n, donde n es el número de columnas de la tabla de verdad (sin tomar en cuenta la columna de salida) Ejemplo: en la siguiente tabla de verdad hay 3 columnas de entrada, entonces habrán: 23 = 8 combinaciones (8 filas) Un circuito con 3 interruptores de entrada (con estados binarios "0" o "1"), tendrá 8 posibles combinaciones. Siendo el resultado (la columna salida) determinado por el estado de los interruptores de entrada. Los circuitos lógicos son básicamente un arreglo de interruptores, conocidos como "compuertas lógicas" (compuertas AND, NAND, OR, NOR, NOT, etc.). Cada compuerta lógica tiene su tabla de verdad. Si pudiéramos ver con más detalle la construcción de las "compuertas lógicas", veríamos que son circuitos constituidos por transistores, resistencias, diodos, etc., conectados de manera que se obtienen salidas específicas para entradas específicas La utilización extendida de las compuertas lógicas, simplifica el diseño y análisis de circuitos complejos. La tecnología moderna actual permite la construcción de circuitos integrados (ICs) que se componen de miles (o millones) de compuertas lógicas.