Your SlideShare is downloading. ×
File
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Text the download link to your phone

Standard text messaging rates apply

File

606
views

Published on

sdf

sdf

Published in: Education, Technology, Business

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
606
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • 3
  • 3
  • 4
  • 5
  • 6
  • 6
  • 6
  • 6
  • 9
  • 9
  • 15
  • 17
  • 18
  • 18
  • 5
  • 6
  • 6
  • 14
  • 23
  • 23
  • 23
  • 2
  • 15
  • 16
  • 17
  • 22
  • 1
  • 2
  • 3
  • 2
  • 4
  • 4
  • 5
  • 1 2
  • 1 2
  • 6
  • 9
  • 7
  • 8
  • 8
  • 1 0
  • 14
  • 15
  • 2
  • 1
  • 11
  • 12
  • 12
  • 6
  • 5
  • 15
  • 6
  • 6
  • 21
  • 12
  • 12
  • 22
  • 6
  • 6
  • 12
  • 12
  • 12
  • 24
  • 6
  • 6
  • 21
  • 12
  • 12
  • 27
  • 6
  • 29
  • 6
  • 29
  • 12
  • 12
  • 39
  • 6
  • 6
  • 12
  • 12
  • 38
  • 8
  • 1
  • 23
  • 25
  • 26
  • 26
  • 25
  • 8
  • 25
  • 26
  • 26
  • 26
  • 26
  • 8
  • 6
  • 1
  • 2
  • 2
  • 6
  • 2
  • 5
  • 7
  • 6
  • 8
  • 8
  • 8
  • 6
  • 8
  • 8
  • 8
  • Transcript

    • 1. Arenes and Aromaticity
    • 2. 11.1 Benzene
    • 3. Some history
      • 1825 Michael Faraday isolates a new hydrocarbon from illuminating gas.
      • 1834 Eilhardt Mitscherlich isolates same substance and determines its empirical formula to be C n H n . Compound comes to be called benzene .
      • 1845 August W. von Hofmann isolates benzene from coal tar.
      • 1866 August Kekul י proposes structure of benzene.
    • 4. בנזן - נוסחה אמפירית C 6 H 6 דוגמה לנוסחה אמפירית כזו בה היחס בין הפחמן למימן הוא 1:1 היא זו של האצטילן - C 2 H 2 HC=CH שוני גדול בין השניים - בניגוד לאצטילן בנזן לא מגיב ל : HCl, KMnO 4 , Br 2 , H 2 O/acid , אינו עובר תגובות של סיפוח שראינו באלקנים .
    • 5. Kekul י and the Structure of Benzene
    • 6.
      • Kekul י proposed a cyclic structure for C 6 H 6 with alternating single and double bonds.
      Kekul י Formulation of Benzene H H H H H H
    • 7.
      • Later, Kekul י revised his proposal by suggesting a rapid equilibrium between two equivalent structures .
      Kekul י Formulation of Benzene H H H H H H H H H H H H
    • 8.
      • However, this proposal suggested isomers of the kind shown were possible. Yet, none were ever found.
      Kekul י Formulation of Benzene H X X H H H H X X H H H
    • 9.
      • Structural studies of benzene do not support the Kekul י formulation. Instead of alternating single and double bonds, all of the C—C bonds are the same length.
      Structure of Benzene Benzene has the shape of a regular hexagon.
    • 10. All C—C bond distances = 140 pm 140 pm 140 pm 140 pm 140 pm 140 pm 140 pm
    • 11. All C—C bond distances = 140 pm
      • 140 pm is the average between the C—C single bond distance and the double bond distance in 1,3-butadiene.
      140 pm 140 pm 140 pm 140 pm 140 pm 140 pm 146 pm 134 pm
    • 12. The Stability of Benzene
      • benzene is the best and most familiar example of a substance that possesses "special stability" or "aromaticity"
      • aromaticity is a level of stability that is substantially greater for a molecule than would be expected on the basis of any of the Lewis structures written for it
    • 13.
      • heat of hydrogenation: compare experimental value with "expected" value for hypothetical "cyclohexatriene"
      Thermochemical Measures of Stability  H°= – 208 kJ + 3H 2 Pt
    • 14. Figure 11.2 (p 404)
      • "expected" heat of hydrogenation of benzene is 3 x heat of hydrogenation of cyclohexene
      120 kJ/mol 360 kJ/mol 3 x cyclohexene
    • 15. Figure 11.2 (p 404)
      • observed heat of hydrogenation is 152 kJ/mol less than "expected"
      • benzene is 152 kJ/mol more stable than expected. 152 kJ/mol (36K cal/mol) is the resonance energy of benzene
      208 kJ/mol 360 kJ/mol 3 x cyclohexene
    • 16. אנטלפית השריפה של בנזן חום השריפה מחושב - Kcal/mol -827 חום השריפה שמתקבל בפועל - 789 Kcal/mol - הפרש של 38 ק”קל למול
    • 17. A Resonance Picture of Bonding in Benzene
    • 18.
      • Instead of Kekul י 's suggestion of a rapid equilibrium between two structures:
      Kekul י Formulation of Benzene H H H H H H H H H H H H
    • 19.
      • express the structure of benzene as a resonance hybrid of the two Lewis structures. Electrons are not localized in alternating single and double bonds, but are delocalized over all six ring carbons.
      Resonance Formulation of Benzene H H H H H H H H H H H H
    • 20.
      • Circle-in-a-ring notation stands for resonance description of benzene (hybrid of two Kekul י structures)
      Resonance Formulation of Benzene
    • 21. Orbital Hybridization Model of Bonding in Benzene
      • Planar ring of 6 sp 2 hybridized carbons
      Figure 11.3
    • 22. Orbital Hybridization Model of Bonding in Benzene
      • Each carbon contributes a p orbital
      • Six p orbitals overlap to give cyclic  system; six  electrons delocalized throughout  system
      Figure 11.3
    • 23. Orbital Hybridization Model of Bonding in Benzene
      • High electron density above and below plane of ring
      Figure 11.3
    • 24. מושג הארומטיות
      • ההשערה שהיציבות הארומטית של הבנזן נובעת מקיום מצבי רזוננס
      • מקרה הציקלובוטן והציקלו אוקטן .
      • תגובות של הלוגנציה , תגובה עם חומצה מלחית , תגובה עם פרמנגנט
      • תיאורית Huckel – מבנים עם :
      • 4n + 2 , 4n  - electrons
    • 25. תרכובות ארומטיות
    • 26. Examples of Aromatic Hydrocarbons Benzene Toluene Naphthalene H H H H H H CH 3 H H H H H H H H H H H H H
    • 27. 11.8 Polycyclic Aromatic Hydrocarbons
    • 28.
      • resonance energy = 255 kJ/mol
      Naphthalene most stable Lewis structure; both rings correspond to Kekulé benzene
    • 29. Anthracene and Phenanthrene Anthracene Phenanthrene resonance energy: 347 kJ/mol 381 kJ/mol
    • 30. An Orbital Hybridization View of Bonding in Benzene
    • 31. Substituted Derivatives of Benzene and Their Nomenclature
    • 32.
      • 1) Benzene is considered as the parent and comes last in the name.
      General Points
    • 33. Examples Bromobenzene tert -Butylbenzene Nitrobenzene NO 2 C(CH 3 ) 3 Br
    • 34.
      • 1) Benzene is considered as the parent and comes last in the name.
      • 2) List substituents in alphabetical order
      • 3) Number ring in direction that gives lowest locant at first point of difference
      General Points
    • 35. Ortho, Meta, and Para alternative locants for disubstituted derivatives of benzene 1,2 = ortho (abbreviated o -) 1,3 = meta (abbreviated m -) 1,4 = para (abbreviated p -)
    • 36. Examples o -ethylnitrobenzene NO 2 CH 2 CH 3 m -dichlorobenzene (1-ethyl-2-nitrobenzene) (1,3-dichlorobenzene) Cl Cl
    • 37. Table 11.1 (p 407) Certain monosubstituted derivatives of benzene have unique names
    • 38. Table 11.1 (p 407) Benzaldehyde CH O
    • 39. Table 11.1 (p 407) Benzoic acid COH O
    • 40. Table 11.1 (p 407) Styrene CH 2 CH
    • 41. Table 11.1 (p 407) Anisole OCH 3
    • 42. Table 11.1 (p 407) Acetophenone CCH 3 O
    • 43. Table 11.1 (p 407) Phenol OH
    • 44. Table 11.1 (p 407) Anisole OCH 3
    • 45. Table 11.1 (p 407) Aniline NH 2
    • 46. Easily confused names phenyl phenol benzyl OH CH 2 —
    • 47. 11.9 Physical Properties of Arenes
    • 48.
      • Resemble other hydrocarbons
      • nonpolar
      • insoluble in water
      • less dense than water
      Physical Properties
    • 49. Reactions of Arenes: Electrophilic Aromatic Substitution H E + E Y + H Y  +  –
    • 50. 12.2 Mechanistic Principles of Electrophilic Aromatic Substitution
    • 51. מנגנון התמרה אלקטרופילית ב - Alkenes
    • 52. Step 1: attack of electrophile on  -electron system of aromatic ring
      • highly endothermic
      • carbocation is allylic, but not aromatic
      H H H H H H E + H H H H H H E +
    • 53. Step 2: loss of a proton from the carbocation intermediate
      • highly exothermic
      • this step restores aromaticity of ring
      H H H E H H H + H H H H H H E +
    • 54. H H H H H + E + H E H H H H + H + H H H H H H H E +
    • 55. תגובות של בנזן
    • 56. Electrophilic aromatic substitutions include:
      • Nitration
      • Sulfonation
      • Halogenation
      • Friedel-Crafts Alkylation
      • Friedel-Crafts Acylation
      H E + E Y + H Y  +  –
    • 57. Nitration of Benzene
    • 58. Table 12.1: Nitration of Benzene + + H 2 O H 2 SO 4 HO NO 2 Nitrobenzene (95%) H NO 2
    • 59. Nitration of Benzene + + H 2 O H 2 SO 4 HO NO 2 Electrophile is nitronium ion H NO 2 O N O •• + •• • • • •
    • 60. Where does nitronium ion come from? H 2 SO 4 + O N H O O + •• •• •• • • • • • • •• – O N H O O + •• •• •• • • • • •• – H + O N O •• + •• • • • • H O •• H ••
    • 61. Step 1: attack of nitronium cation on  -electron system of aromatic ring H H H H H H NO 2 + H H H H H H NO 2 +
    • 62. Step 2: loss of a proton from the carbocation intermediate H H H NO 2 H H H + H H H H H H NO 2 + מצבים רזונטביים
    • 63. Sulfonation of Benzene
    • 64. Table 12.1: Sulfonation of Benzene + + H 2 O heat HO SO 2 OH Benzenesulfonic acid (100%) H SO 2 OH
    • 65. Sulfonation of Benzene + + H 2 O heat HO SO 2 OH Several electrophiles present: a major one is sulfur trioxide H SO 2 OH O S O O + •• •• •• • • • • • • •• –
    • 66. Step 1: attack of sulfur trioxide on  -electron system of aromatic ring H H H H H H SO 3 H H H H H H SO 3 – +
    • 67. Step 2: loss of a proton from the carbocation intermediate H H H SO 3 – H H H + H H H H H H SO 3 – +
    • 68. Step 3: protonation of benzenesulfonate ion H 2 SO 4 H H H SO 3 – H H H H H SO 3 H H H
    • 69. Halogenation of Benzene
    • 70. Table 12.1: Halogenation of Benzene + + H Br FeBr 3 Br 2 Bromobenzene (65-75%) H Br
    • 71. Halogenation of Benzene + + H Br FeBr 3 Br 2 Electrophile is a Lewis acid-Lewis base complex between FeBr 3 and Br 2 . H Br
    • 72. The Br 2 -FeBr 3 Complex
      • The Br 2 -FeBr 3 complex is more electrophilic than Br 2 alone.
      + Lewis base Lewis acid FeBr 3 Complex • • Br Br • • •• •• •• •• Br Br • • •• •• •• •• FeBr 3 – +
    • 73. Step 1: attack of Br 2 -FeBr 3 complex on  -electron system of aromatic ring H H H H H H Br Br FeBr 3 – + + FeBr 4 – H H H H H H Br +
    • 74. Step 2: loss of a proton from the carbocation intermediate H H H Br H H H + H H H H H H Br +
    • 75. Friedel-Crafts Alkylation of Benzene
    • 76. Table 12.1: Friedel-Crafts Alkylation of Benzene + + H Cl AlCl 3 tert -Butylbenzene (60%) (CH 3 ) 3 C Cl H C(CH 3 ) 3
    • 77.
      • acts as a Lewis acid to promote ionization of the alkyl halide
      Role of AlCl 3 (CH 3 ) 3 C Cl •• •• + AlCl 3 • • + (CH 3 ) 3 C Cl •• •• AlCl 3 –
    • 78. Friedel-Crafts Alkylation of Benzene + + H Cl AlCl 3 Electrophile is tert -butyl cation (CH 3 ) 3 CCl H C(CH 3 ) 3 C CH 3 H 3 C H 3 C +
    • 79.
      • acts as a Lewis acid to promote ionization of the alkyl halide
      Role of AlCl 3 (CH 3 ) 3 C Cl •• •• + AlCl 3 + (CH 3 ) 3 C + • • + (CH 3 ) 3 C Cl •• •• AlCl 3 – Cl •• •• AlCl 3 – • •
    • 80. Step 1: attack of tert-butyl cation on  -electron system of aromatic ring H H H H H H H H H H H H C(CH 3 ) 3 + C(CH 3 ) 3 +
    • 81. Step 2: loss of a proton from the carbocation intermediate H H H C(CH 3 ) 3 H H H + H H H H H H C(CH 3 ) 3 +
    • 82. Friedel-Crafts Acylation of Benzene
    • 83. Table 12.1: Friedel-Crafts Acylation of Benzene + + H Cl AlCl 3 1-Phenyl-1-propanone (88%) H O CH 3 CH 2 C Cl CCH 2 CH 3 O
    • 84. Friedel-Crafts Acylation of Benzene + + H Cl AlCl 3 O CH 3 CH 2 CCl CCH 2 CH 3 O Electrophile is an acyl cation H •• CH 3 CH 2 C O • • + CH 3 CH 2 C O • • +
    • 85. Step 1: attack of the acyl cation on  -electron system of aromatic ring H H H H H H H H H H H H + O CCH 2 CH 3 + O CCH 2 CH 3
    • 86. Step 2: loss of a proton from the carbocation intermediate H H H H H H + H H H H H H + O CCH 2 CH 3 O CCH 2 CH 3
    • 87. Reactions Related to Friedel-Crafts Alkylation
      • Cyclohexene is protonated by sulfuric acid, giving cyclohexyl cation which attacks the benzene ring
      H 2 SO 4 + Cyclohexylbenzene (65-68%) H
    • 88. Substituent Effects in Electrophilic Aromatic Substitution: הכנסת מתמיר שני לטבעת
    • 89. הכנסת מתמיר שני לטבעת
      • שתי שאלות –
      • לאן המתמיר השני יכנס ?
      • האם כניסת המתמיר השני תהיה מהירה או איטית מכניסה של אותו מתמיר לבנזן עצמו ??
    • 90. Table 12.2
        • Very strongly activating
        • Strongly activating
        • Activating
        • Standard of comparison is H
        • Deactivating
        • Strongly deactivating
        • Very strongly deactivating
        • Classification of Substituents in Electrophilic Aromatic Substitution Reactions
    • 91.
      • 1. All activating substituents are – OH, -OR, ortho-para directors. - R, NHR, NR2
      • 2. Halogen substituents are slightly deactivating but ortho-para directing.
      • 3. Strongly deactivating substituents are meta directors. NO2, C=O, SO3H,
      Generalizations
    • 92.
      • are ortho-para directing and strongly activating
      Electron-Releasing Groups OR such as —OH, and —OR are strongly activating
    • 93.
      • occurs about 1000 times faster than nitration of benzene
      Nitration of Phenol HNO 3 + 44% 56% OH OH NO 2 OH NO 2
    • 94.
      • FeBr 3 catalyst not necessary
      Bromination of Anisole Br 2 90% acetic acid OCH 3 OCH 3 Br
    • 95.
      • All of these are ortho-para directing and strongly to very strongly activating
      Examples ERG = • • • • OH •• OR • • •• • • NH 2 • • NHR • • NR 2
    • 96. מדוע קבוצות אלה גורמות לאקטיבציה ולהכוונה לעמדות ortho, para הסבר – שתי סיבות מולקולת האם מצבי הביניים לאחר כניסת המתמיר
    • 97. Substituent Effects in Electrophilic Aromatic Substitution: Strongly Deactivating Substituents
    • 98.
      • All of these are meta directing and strongly deactivating
      Many EWGs Have a Carbonyl Group Attached Directly to the Ring — EWG = — NO 2 — SO 3 H O — CH O — CR O — COH O — COR O — CCl — C N
    • 99. הסיבות להכוונה לעמדת meta ודאקטיבציה
    • 100. Nitration of Benzaldehyde HNO 3 75-84% H 2 SO 4 CH O CH O O 2 N
    • 101. Problem 12.14(a); page 468 Cl 2 62% FeCl 3 Cl CCl O CCl O
    • 102. Disulfonation of Benzene SO 3 90% H 2 SO 4 SO 3 H HO 3 S
    • 103. Bromination of Nitrobenzene Br 2 60-75% Fe Br NO 2 NO 2
    • 104. 12.14 Substituent Effects in Electrophilic Aromatic Substitution: Halogens
      • F, Cl, Br, and I are ortho-para directing, but deactivating
      גורמים לדאקטיבציה חלשה והכוונה לעמדות ortho, para
    • 105. Nitration of Chlorobenzene
      • The rate of nitration of chlorobenzene is about 30 times slower than that of benzene.
      HNO 3 + + 69% 1% 30% H 2 SO 4 Cl Cl NO 2 Cl NO 2 Cl NO 2
    • 106. Multiple Substituent Effects
    • 107.
      • all possible EAS sites may be equivalent
      The Simplest Case AlCl 3 + CH 3 CH 3 CCH 3 99% O CH 3 COCCH 3 O CH 3 CH 3 O
    • 108.
      • directing effects of substituents reinforce each other; substitution takes place ortho to the methyl group and meta to the nitro group
      Another Straightforward Case CH 3 NO 2 Br 86-90% CH 3 NO 2 Br 2 Fe
    • 109. Generalization
      • regioselectivity is controlled by the most activating substituent
    • 110.
      • all possible EAS sites may be equivalent
      The Simplest Case Br 2 87% acetic acid strongly activating NHCH 3 Cl NHCH 3 Cl Br
    • 111.
      • position between two substituents is last position to be substituted
      Steric effects control regioselectivity when electronic effects are similar 98% HNO 3 H 2 SO 4 CH 3 CH 3 NO 2 CH 3 CH 3
    • 112. 12.16 Regioselective Synthesis of Disubstituted Aromatic Compounds
    • 113. Factors to Consider
      • order of introduction of substituents to ensure correct orientation
    • 114. Synthesis of m-Bromoacetophenone
      • Which substituent should be introduced first?
      Br CCH 3 O CCH 3 O Br
    • 115. Synthesis of m-Bromoacetophenone para meta Br CCH 3 O
    • 116. Synthesis of m-Bromoacetophenone AlCl 3 Br 2 AlCl 3 CCH 3 O O CH 3 COCCH 3 O CCH 3 O Br
    • 117. Factors to Consider
      • order of introduction of substituents to ensure correct orientation
      • sometimes electrophilic aromatic substitution must be combined with a functional group transformation
    • 118. Synthesis of p-Nitrobenzoic Acid from Toluene
      • Which first? (oxidation of methyl group or nitration of ring)
      CH 3 CO 2 H NO 2 CH 3
    • 119. Synthesis of p-Nitrobenzoic Acid from Toluene nitration gives m -nitrobenzoic acid oxidation gives p -nitrobenzoic acid CH 3 CO 2 H NO 2 CH 3
    • 120. Synthesis of p-Nitrobenzoic Acid from Toluene HNO 3 H 2 SO 4 Na 2 Cr 2 O 7 , H 2 O H 2 SO 4 , heat CH 3 NO 2 CH 3 NO 2 CO 2 H