• Save
TE2-SE-2012-1S
Upcoming SlideShare
Loading in...5
×
 

TE2-SE-2012-1S

on

  • 547 views

 

Statistics

Views

Total Views
547
Views on SlideShare
543
Embed Views
4

Actions

Likes
0
Downloads
0
Comments
0

1 Embed 4

http://www.linkedin.com 4

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

TE2-SE-2012-1S TE2-SE-2012-1S Document Transcript

  • ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL TEORÍA ELECTROMAGNÉTICA II Profesor: Ing. Alberto Tama FrancoSEGUNDA EVALUACIÓN Fecha: miércoles 29 de agosto del 2012Alumno: _____________________________________________________________________________PRIMER TEMA:Una antena, cuya impedancia de carga es ZL  30  j40   , se encuentra conectada auna línea de transmisión sin pérdidas de 50   . Para efectuar el acoplamiento, se utilizaun sistema de 2 STUBs de 50   , ubicados entre la línea y la carga, ambos separadosentre sí una distancia de 80  mm  y  r  1 , donde el primero de ellos es colocado en elpunto de conexión de la antena, tal como se muestra en la figura. Si la frecuencia deoperación es de 430  MHz  , determinar las longitudes mínimas l1 y l2 que deberán tenerlos sintonizadores con la finalidad de lograr un acoplamiento perfecto (esquematizarúnicamente la solución óptima, criterio CAE). d12 Z o  50    Z L  30  j 40    l2 l1 Ing. Alberto Tama Franco Profesor de la Materia Teoría Electromagnética II FIEC-ESPOL – 2012 –1S
  • Black Magic Design 0.12 0.13 0.11 0.14 0.38 0.37 0.15 0.1 0.39 0.36 90 0.4 100 80 0.35 0.1 0 .09 6 45 70 50 0.4 1 110 40 0.3 1.0 4 0.9 1.2 0.1 55 .08 0.8 0 7 35 1.4 0.3 2 0 60 0.7 0.4 12 3 0.6 60 ) /Yo 1.6 0.1 0.0 7 E (+jB 30 8 3 NC 0.3 0.4 TA 0.2 1.8 2 0 EP 50 SC 65 13 SU 2.0 E 0.5 IV 06 0. IT 25 19 0. AC 44 0. AP 31 0. C 70 R ,O 0.4 o) 0 40 14 4 5 0. 0.2 0.0 /Z 5 20 0.3 jX 0.4 (+ 3.0 T 75 EN 0.6 N PO 4 0.2 0.0 0.3 OM 0 6 0.2 1 30 15 0.4 9 0.8 EC 15 > 4.0 R— 80 NC TO TA 1.0 0.22 AC ERA 0.47 0.28 5.0 RE 1.0 GEN 0.2 160 IVE 20 85 10 UCT ARD 8 0. 0.23 IND S TOW 0.48 0.27 ANG 90 0.6 ANG LE OF NGTH 10 LE OF 170 0.1 0.4 TRANSM 0.0 —> WAVELE 0.24 0.49 0.26 REFLECTION COEFFICIENT IN DE 20 0.2 ISSION COEFFICIENT IN 50 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 3.0 4.0 5.0 10 20 50 0.25 0.25 ± 180 0.0 50 RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo) D <— 0.2 20 RD LOA 0.24 0.49 0.26 0.4 70 0.1 DEGR −1 A GREE 10 S TOW 0.6 EES -90 S 0.23 ) 0.48 0.27 H /Yo NGT 8 (-jB 0. -10 ELE 160 CE −20 -85 0.2 V N − 1.0 WA 5.0 TA 0.22 7 0.28 0.4 EP 1.0 <— SC SU -80 4.0 0.8 -15 VE 04 0.2 50 TI 0.3 −3 UC −1 0. .46 0.2 1 0 D 0 9 IN 0.6 -75 R 3.0 ,O o) 5 -20 0.2 0.0 /Z 4 5 0. 0.3 X 0.4 40 (-j −4 −1 0 T 0.4 EN -70 N PO 06 0. 19 0. M CO -25 44 0. 0.5 31 0. CE 2.0 30 −5 AN 0 −1 -65 CT 0.1 7 EA 0.2 1.8 0.0 VE R 8 0.6 ITI 0.3 3 0.4 AC -30 2 1.6 CAP -60 20 .08 −6 0.1 0 0.7 −1 7 1.4 0 2 -35 0.3 0.8 0.4 3 1.2 -55 0.9 0.1 1.0 9 −70 0.0 0 −11 0 6 -4 0 -5 5 0.3 -4 1 0.4 0.1 −100 −80 0.15 4 −90 0.11 0.14 0.35 0.4 0.12 0.13 0.39 0.36 0.38 0.37 ] F RADIALLY SCALED PARAMETERS dB F . [ OE RT SW TOWARD LOAD —> <— TOWARD GENERATOR EN S C ] . P) N R TT S B T . ∞ 100 40 20 10 5 4 3 2.5 2 1.8 1.6 1.4 1.2 1.1 1 15 10 7 5 4 3 2 1 A . LO [d NS R L d SRF FL OSS BS W S O P S. LO (C F, L. . C [d ∞ 40 30 20 15 10 8 6 5 4 3 2 1 1 1 1.1 1.2 1.3 1.4 1.6 1.8 2 3 4 5 10 20 ∞ . K F C OE B] O 0 1 2 3 4 5 6 7 8 9 10 12 14 20 30 ∞ 0 0.1 0.2 0.4 0.6 0.8 1 1.5 2 3 4 5 6 10 15 ∞ FL EA OE R .P C I EF FF . or F, , P .W SM ,E E 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.01 0 0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.5 3 4 5 10 ∞ S N FF or A E I 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1 0.99 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 TR O .C SM CENTER N A 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 TR ORIGIN
  • SEGUNDO TEMA:Una línea ranurada en el aire cuya impedancia característica es de 50   se aplica a lamedición de una impedancia de carga. El patrón de voltaje obtenido directamente deldetector, tanto de los mínimos adyacentes (cuando la carga desconocida está conectada)como de los mínimos cuando la carga es remplazada por un cortocircuito, se muestra enla siguiente figura. Si la frecuencia de operación es de 400  MHz  , determinar: s,  y Z L . Ing. Alberto Tama Franco Profesor de la Materia Teoría Electromagnética II FIEC-ESPOL – 2012 –1S View slide
  • Black Magic Design 0.12 0.13 0.11 0.14 0.38 0.37 0.15 0.1 0.39 0.36 90 0.4 100 80 0.35 0.1 0 .09 6 45 70 50 0.4 1 110 40 0.3 1.0 4 0.9 1.2 0.1 55 .08 0.8 0 7 35 1.4 0.3 2 0 60 0.7 0.4 12 3 0.6 60 ) /Yo 1.6 0.1 0.0 7 E (+jB 30 8 3 NC 0.3 0.4 TA 0.2 1.8 2 0 EP 50 SC 65 13 SU 2.0 E 0.5 IV 06 0. IT 25 19 0. AC 44 0. AP 31 0. C 70 R ,O 0.4 o) 0 40 14 4 5 0. 0.2 0.0 /Z 5 20 0.3 jX 0.4 (+ 3.0 T 75 EN 0.6 N PO 4 0.2 0.0 0.3 OM 0 6 0.2 1 30 15 0.4 9 0.8 EC 15 > 4.0 R— 80 NC TO TA 1.0 0.22 AC ERA 0.47 0.28 5.0 RE 1.0 GEN 0.2 160 IVE 20 85 10 UCT ARD 8 0. 0.23 IND S TOW 0.48 0.27 ANG 90 0.6 ANG LE OF NGTH 10 LE OF 170 0.1 0.4 TRANSM 0.0 —> WAVELE 0.24 0.49 0.26 REFLECTION COEFFICIENT IN DE 20 0.2 ISSION COEFFICIENT IN 50 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 3.0 4.0 5.0 10 20 50 0.25 0.25 ± 180 0.0 50 RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo) D <— 0.2 20 RD LOA 0.24 0.49 0.26 0.4 70 0.1 DEGR −1 A GREE 10 S TOW 0.6 EES -90 S 0.23 ) 0.48 0.27 H /Yo NGT 8 (-jB 0. -10 ELE 160 CE −20 -85 0.2 V N − 1.0 WA 5.0 TA 0.22 7 0.28 0.4 EP 1.0 <— SC SU -80 4.0 0.8 -15 VE 04 0.2 50 TI 0.3 −3 UC −1 0. .46 0.2 1 0 D 0 9 IN 0.6 -75 R 3.0 ,O o) 5 -20 0.2 0.0 /Z 4 5 0. 0.3 X 0.4 40 (-j −4 −1 0 T 0.4 EN -70 N PO 06 0. 19 0. M CO -25 44 0. 0.5 31 0. CE 2.0 30 −5 AN 0 −1 -65 CT 0.1 7 EA 0.2 1.8 0.0 VE R 8 0.6 ITI 0.3 3 0.4 AC -30 2 1.6 CAP -60 20 .08 −6 0.1 0 0.7 −1 7 1.4 0 2 -35 0.3 0.8 0.4 3 1.2 -55 0.9 0.1 1.0 9 −70 0.0 0 −11 0 6 -4 0 -5 5 0.3 -4 1 0.4 0.1 −100 −80 0.15 4 −90 0.11 0.14 0.35 0.4 0.12 0.13 0.39 0.36 0.38 0.37 ] F RADIALLY SCALED PARAMETERS dB F . [ OE RT SW TOWARD LOAD —> <— TOWARD GENERATOR EN S C ] . P) N R TT S B T . ∞ 100 40 20 10 5 4 3 2.5 2 1.8 1.6 1.4 1.2 1.1 1 15 10 7 5 4 3 2 1 A . LO [d NS R L d SRF FL OSS BS W S O P S. LO (C F, L. . C [d ∞ 40 30 20 15 10 8 6 5 4 3 2 1 1 1 1.1 1.2 1.3 1.4 1.6 1.8 2 3 4 5 10 20 ∞ . K F C OE B] O 0 1 2 3 4 5 6 7 8 9 10 12 14 20 30 ∞ 0 0.1 0.2 0.4 0.6 0.8 1 1.5 2 3 4 5 6 10 15 ∞ FL EA OE R .P C I EF FF . or F, , P .W SM ,E E 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.01 0 0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.5 3 4 5 10 ∞ S N FF or A E I 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1 0.99 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 TR O .C SM CENTER N A 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 TR ORIGIN View slide
  • TERCER TEMA:Se requiere acoplar, a una frecuencia de operación de 500  MHz  , una antena detransmisión, cuya impedancia de carga es ZL  100  j50   a una LTSP cuya impedanciacaracterística es Zo  50   , mediante la utilización de un circuito ideal LC de parámetrosconcentrados, tal como se muestra en la figura. Determine los valores de L y C quepermiten cumplir con la condición de acoplamiento. A continuación, intercambie L por C yviceversa, y determine los nuevos valores que satisfagan dicha condición. C Vg Z o  50   L Z L  100  j 50    Ing. Alberto Tama Franco Profesor de la Materia Teoría Electromagnética II FIEC-ESPOL – 2012 –1S
  • Black Magic Design 0.12 0.13 0.11 0.14 0.38 0.37 0.15 0.1 0.39 0.36 90 0.4 100 80 0.35 0.1 0 .09 6 45 70 50 0.4 1 110 40 0.3 1.0 4 0.9 1.2 0.1 55 .08 0.8 0 7 35 1.4 0.3 2 0 60 0.7 0.4 12 3 0.6 60 ) /Yo 1.6 0.1 0.0 7 E (+jB 30 8 3 NC 0.3 0.4 TA 0.2 1.8 2 0 EP 50 SC 65 13 SU 2.0 E 0.5 IV 06 0. IT 25 19 0. AC 44 0. AP 31 0. C 70 R ,O 0.4 o) 0 40 14 4 5 0. 0.2 0.0 /Z 5 20 0.3 jX 0.4 (+ 3.0 T 75 EN 0.6 N PO 4 0.2 0.0 0.3 OM 0 6 0.2 1 30 15 0.4 9 0.8 EC 15 > 4.0 R— 80 NC TO TA 1.0 0.22 AC ERA 0.47 0.28 5.0 RE 1.0 GEN 0.2 160 IVE 20 85 10 UCT ARD 8 0. 0.23 IND S TOW 0.48 0.27 ANG 90 0.6 ANG LE OF NGTH 10 LE OF 170 0.1 0.4 TRANSM 0.0 —> WAVELE 0.24 0.49 0.26 REFLECTION COEFFICIENT IN DE 20 0.2 ISSION COEFFICIENT IN 50 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 3.0 4.0 5.0 10 20 50 0.25 0.25 ± 180 0.0 50 RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo) D <— 0.2 20 RD LOA 0.24 0.49 0.26 0.4 70 0.1 DEGR −1 A GREE 10 S TOW 0.6 EES -90 S 0.23 ) 0.48 0.27 H /Yo NGT 8 (-jB 0. -10 ELE 160 CE −20 -85 0.2 V N − 1.0 WA 5.0 TA 0.22 7 0.28 0.4 EP 1.0 <— SC SU -80 4.0 0.8 -15 VE 04 0.2 50 TI 0.3 −3 UC −1 0. .46 0.2 1 0 D 0 9 IN 0.6 -75 R 3.0 ,O o) 5 -20 0.2 0.0 /Z 4 5 0. 0.3 X 0.4 40 (-j −4 −1 0 T 0.4 EN -70 N PO 06 0. 19 0. M CO -25 44 0. 0.5 31 0. CE 2.0 30 −5 AN 0 −1 -65 CT 0.1 7 EA 0.2 1.8 0.0 VE R 8 0.6 ITI 0.3 3 0.4 AC -30 2 1.6 CAP -60 20 .08 −6 0.1 0 0.7 −1 7 1.4 0 2 -35 0.3 0.8 0.4 3 1.2 -55 0.9 0.1 1.0 9 −70 0.0 0 −11 0 6 -4 0 -5 5 0.3 -4 1 0.4 0.1 −100 −80 0.15 4 −90 0.11 0.14 0.35 0.4 0.12 0.13 0.39 0.36 0.38 0.37 ] F RADIALLY SCALED PARAMETERS dB F . [ OE RT SW TOWARD LOAD —> <— TOWARD GENERATOR EN S C ] . P) N R TT S B T . ∞ 100 40 20 10 5 4 3 2.5 2 1.8 1.6 1.4 1.2 1.1 1 15 10 7 5 4 3 2 1 A . LO [d NS R L d SRF FL OSS BS W S O P S. LO (C F, L. . C [d ∞ 40 30 20 15 10 8 6 5 4 3 2 1 1 1 1.1 1.2 1.3 1.4 1.6 1.8 2 3 4 5 10 20 ∞ . K F C OE B] O 0 1 2 3 4 5 6 7 8 9 10 12 14 20 30 ∞ 0 0.1 0.2 0.4 0.6 0.8 1 1.5 2 3 4 5 6 10 15 ∞ FL EA OE R .P C I EF FF . or F, , P .W SM ,E E 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.01 0 0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.5 3 4 5 10 ∞ S N FF or A E I 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1 0.99 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 TR O .C SM CENTER N A 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 TR ORIGIN