SlideShare a Scribd company logo
1 of 50
Download to read offline
Reservoir Engineering 1 Course (1st Ed.)
1. USS(LT) Regime for Radial flow of SC Fluids:
Finite-Radial Reservoir
2. Relation between pD and Ei
3. USS Regime for Radial Flow of C Fluids
A. (Exact Method)
B. (P2 Approximation Method)
C. (P Approximation Method)

4. PSS regime Flow Constant
1. PSS
A.
B.
C.
D.

Average Reservoir Pressure
PSS regime for Radial Flow of SC Fluids
Effect of Well Location within the Drainage Area
PSS Regime for Radial Flow of C Fluids

2. Skin Concept
3. Using S for Radial Flow in Flow Equations
Q913 re1 w3 lec 11
Average Reservoir Pressure in PSS
Because the pressure at every point in the reservoir
is changing at the same rate, it leads to the
conclusion that the average reservoir pressure is
changing at the same rate.
This average reservoir pressure is essentially set equal to
the volumetric average reservoir pressure p– r.
It is the pressure that is used to perform flow calculations
during the semisteady state flowing condition.

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

5
Average Reservoir Pressure
Calculation in PSS
In the above discussion, p– r indicates that, in
principal, the above Equation can be used to
estimate by replacing the pressure decline rate
dp/dt with (pi − p– r)/t, or:
(t is approximately the elapsed time since the end
of the transient flow regime to the time of interest.)

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

6
Volumetric Average Pressure
of the Entire Reservoir
It should be noted that when performing material
balance calculations, the volumetric average
pressure of the entire reservoir is used to calculate
the fluid properties. This pressure can be
determined from the individual well drainage
properties as follows:

Where Vi = pore volume of the ith drainage volume
p–ri = volumetric average pressure within the ith
drainage volume.
2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

7
Using the Flow Rate
in Volumetric Avg Reservoir Pressure
Figure illustrates the
concept of the
volumetric average
pressure.
In practice, the Vi’s are
difficult to determine
and, therefore, it is
common to use the
flow rate qi.

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

8
Applications
of the Pseudosteady-State Flow
The practical applications of using the
pseudosteady-state flow condition to describe the
flow behavior of the following two types of fluids
are presented below:
Radial flow of slightly compressible fluids
Radial flow of compressible fluids

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

9
Q913 re1 w3 lec 11
Diffusivity Equation in PSS
The diffusivity equation as expressed previously for
the transient flow regime is:
For the semisteady-state flow, the term (∂p/∂t) is
constant so:

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

11
Radial Flow of Slightly Compressible
Fluids Calculation

Where c1 is the constant of the integration and can
be evaluated by imposing the outer no-flow
boundary condition [i.e., (∂p/∂r) re = 0] on the
above relation to give:

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

12
Flow Rate for Radial Flow of Slightly
Compressible Fluids (PSS)
Performing the above
integration and assuming
(rw 2 /re 2) is negligible
gives:

A more appropriate form
of the above is to solve
for the flow rate, to give:
2013 H. AlamiNia

Where Q = flow rate,
STB/day
B = formation volume
factor, bbl/STB
k = permeability, md

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

13
Q Vs. Average Reservoir Pressure for
PSS Regime
The volumetric average reservoir pressure p– r is
commonly used in calculating the liquid flow rate
under the semisteady-state flowing condition.
Introducing the p– r into previous Equation gives:
(the volumetric average pressure p–r occurs at about 47% of
the drainage radius during the semisteady-state condition.)

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

14
Q913 re1 w3 lec 11
Using Pd Solution (PSS)
It is interesting to notice that the dimensionless
pressure pD solution to the diffusivity equation can
be used to derive previous Equation.

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

16
Effect of Geometry on PSS Flow
It should be pointed out that the pseudosteadystate flow occurs regardless of the geometry of the
reservoir.
Irregular geometries also reach this state when
they have been produced long enough for the
entire drainage area to be affected.

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

17
Shape Factor
Rather than developing a separate equation for
each geometry, Ramey and Cobb (1971) introduced
a correction factor that is called the shape factor,
CA, which is designed to account for the deviation
of the drainage area from the ideal circular form.
The shape factor, accounts also for the location of
the well within the drainage area.

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

18
Shape Factor Tables

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

19
Solutions Using CA
Introducing CA into following Equation and
performing the solution procedure gives the
following two solutions:

In terms of the volumetric average pressure p–r:

In terms of the initial reservoir pressure pi:

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

20
Q913 re1 w3 lec 11
Radial Flow of
Compressible Fluids (Gases) (PSS)
 The radial diffusivity equation was developed to study the performance
of compressible fluid under unsteady-state conditions. The equation has
the following form:

 For the semisteady-state flow, the rate of change of the real gas
pseudopressure with respect to time is constant, i.e.,
 Using the same technique identical to that described previously for
liquids gives the following exact solution to the diffusivity equation:

 Where Qg = gas flow rate, Mscf/day
 T = temperature, °R
 k = permeability, md

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

22
Approximations for
Radial Flow of Gases (PSS)
Two approximations to the above solution are
widely used. These approximations are:
Pressure-squared approximation
Pressure-approximation

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

23
P2 Approximation
As outlined previously, the method provides us
with compatible results to that of the exact solution
approach when p < 2000.
The solution has the following familiar form:

The gas properties z– and μ are evaluated at:

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

24
P Approximation
This approximation method is applicable at p>3000
psi and has the following mathematical form:

With the gas properties evaluated at:

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

25
Q913 re1 w3 lec 11
Q913 re1 w3 lec 11
Assumptions
in Deriving the Flow Equations
In deriving the flow equations, the following two
main assumptions were made:
Uniform permeability throughout the drainage area
Laminar (viscous) flow

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

28
Correction Factors for Assumptions
Before using any of the previous mathematical
solutions to the flow equations, the solution must
be modified to account for the possible deviation
from the above two assumptions.
Introducing the following two correction factors
into the solution of the flow equation can eliminate
the above two assumptions:
Skin factor
Turbulent flow factor

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

29
Wellbore Damage
It is not unusual for materials such as mud filtrate,
cement slurry, or clay particles to enter the
formation during drilling, completion, or workover
operations and reduce the permeability around the
wellbore.
This effect is commonly referred to as a wellbore
damage and
The region of altered permeability is called the skin
zone.

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

30
Skin Zone
Skin zone can extend from a few inches to several
feet from the wellbore.
Many other wells are stimulated by acidizing or
fracturing, which in effect increase the permeability
near the wellbore.
Thus, the permeability near the wellbore is always
different from the permeability away from the well
where the formation has not been affected by
drilling or stimulation.

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

31
Near Wellbore Skin Effect
A schematic
illustration of
the skin zone
is shown in
Figure.

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

32
Skin Effect
Those factors that cause damage to the formation
can produce additional localized pressure drop
during flow.
This additional pressure drop is commonly referred to as
Δpskin.

On the other hand, well stimulation techniques will
normally enhance the properties of the formation
and increase the permeability around the wellbore,
so that a decrease in pressure drop is observed.
The resulting effect of altering the permeability
around the well bore is called the skin effect.
2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

33
Skin Types
Figure compares the
differences in the skin
zone pressure drop for
three possible outcomes:
Δpskin > 0, indicates an
additional pressure drop
due to wellbore damage,
i.e., kskin < k.
Δpskin < 0, indicates less
pressure drop due to
wellbore improvement,
i.e., kskin > k.
Δpskin = 0, indicates no
changes in the wellbore
condition, i.e., kskin = k.
2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

34
Skin Zone Pressure Drop
Hawkins (1956) suggested that the permeability in
the skin zone, i.e., kskin, is uniform and the
pressure drop across the zone can be approximated
by Darcy’s equation. Hawkins proposed the
following approach:

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

35
Skin Factor
The additional pressure drop expression is
commonly expressed in the following form:

Where s is called the skin factor and defined as:

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

36
Positive Skin Factor

Positive Skin Factor, s > 0
When a damaged zone near the wellbore exists, kskin is
less than k and hence s is a positive number.
The magnitude of the skin factor increases as kskin
decreases and as the depth of the damage rskin
increases.

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

37
Negative Skin Factor
Negative Skin Factor, s < 0
When the permeability around the well kskin is higher
than that of the formation k, a negative skin factor exists.
This negative factor indicates an improved wellbore
condition.
a negative skin factor will result in a negative value of
Δpskin.
This implies that a stimulated well will require less pressure
drawdown to produce at rate q than an equivalent well with
uniform permeability.

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

38
Zero Skin Factor
Zero Skin Factor, s = 0
Zero skin factor occurs when no alternation in the
permeability around the wellbore is observed, i.e., kskin
= k.

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

39
Q913 re1 w3 lec 11
Modification of the Flow Equations
The proposed modification of the previous flow
equation is based on the concept that the actual
total pressure drawdown will increase or decrease
by an amount of Δpskin.
Assuming that (Δp) ideal represents the pressure
drawdown for a drainage area with a uniform
permeability k, then:

The concept can be applied to all the previous flow
regimes to account for the skin zone around the
wellbore.
2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

41
S in SS Regime
for Radial Flow of SC Fluids

 Where









Qo = oil flow rate, STB/day
k = permeability, md
h = thickness, ft
s = skin factor
Bo = oil formation volume factor, bbl/STB
μo = oil viscosity, cp
pi = initial reservoir pressure, psi
pwf = bottom hole flowing pressure, psi

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

42
S in USS Regime
for Radial flow of SC Fluids

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

43
S in USS Regime
of Radial Flow of C Fluids

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

44
S in PSS regime
for Radial Flow of SC Fluids

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

45
S in PSS Regime
for Radial Flow of C Fluids

Where:
Qg = gas flow rate, Mscf/day
k = permeability, md
T = temperature, °R
(μ–g) = gas viscosity at average pressure p–, cp
z–g = gas compressibility factor at average pressure p–

2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

46
Effective (Apparent) Wellbore Radius
Matthews and Russell (1967) proposed an
alternative treatment to the skin effect by
introducing the effective or apparent wellbore
radius rwa that accounts for the pressure drop in
the skin. They define rwa by the following equation:
All of the ideal radial flow equations can be also
modified for the skin by simply replacing wellbore
radius rw with that of the apparent wellbore radius
rwa.
2013 H. AlamiNia

Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin
Effect

47
1. Ahmed, T. (2006). Reservoir engineering
handbook (Gulf Professional Publishing). Ch6
1. Turbulent Flow
2. Superposition
A. Multiple Well
B. Multi Rate
C. Reservoir Boundary
Q913 re1 w3 lec 11

More Related Content

What's hot

Introduction to Well Testing.pdf
Introduction to Well Testing.pdfIntroduction to Well Testing.pdf
Introduction to Well Testing.pdfssuser2fc67e
 
Skin Factor and Formation Damage
Skin Factor and Formation DamageSkin Factor and Formation Damage
Skin Factor and Formation DamageNouh Almandhari
 
Q913 re1 w4 lec 14
Q913 re1 w4 lec 14Q913 re1 w4 lec 14
Q913 re1 w4 lec 14AFATous
 
Geomechanical Study of Wellbore Stability
Geomechanical Study of Wellbore StabilityGeomechanical Study of Wellbore Stability
Geomechanical Study of Wellbore StabilityVidit Mohan
 
Q913 re1 w4 lec 15
Q913 re1 w4 lec 15Q913 re1 w4 lec 15
Q913 re1 w4 lec 15AFATous
 
Q921 re1 lec11 v1
Q921 re1 lec11 v1Q921 re1 lec11 v1
Q921 re1 lec11 v1AFATous
 
Q921 re1 lec10 v1
Q921 re1 lec10 v1Q921 re1 lec10 v1
Q921 re1 lec10 v1AFATous
 
Factors effecting vertical lift performance
Factors effecting vertical lift performanceFactors effecting vertical lift performance
Factors effecting vertical lift performanceJALEEL AHMED
 
Applied reservoir eng
Applied reservoir engApplied reservoir eng
Applied reservoir engmohamad1286
 
Reservoir simulation (april 2017)
Reservoir simulation (april 2017)Reservoir simulation (april 2017)
Reservoir simulation (april 2017)NghiaHuynh47
 
Reservoir Geomechanics
Reservoir GeomechanicsReservoir Geomechanics
Reservoir GeomechanicsJames Craig
 
Well stimulation - petroleum engineering
Well stimulation - petroleum engineeringWell stimulation - petroleum engineering
Well stimulation - petroleum engineeringRebaz Hamad
 
Q913 re1 w2 lec 6
Q913 re1 w2 lec 6Q913 re1 w2 lec 6
Q913 re1 w2 lec 6AFATous
 
Formation pressure (PPFG) based on HW
Formation pressure (PPFG) based on HWFormation pressure (PPFG) based on HW
Formation pressure (PPFG) based on HWFarida Ismayilova
 
Q922+re2+l02 v1
Q922+re2+l02 v1Q922+re2+l02 v1
Q922+re2+l02 v1AFATous
 
Well Teste Interpretation
Well Teste InterpretationWell Teste Interpretation
Well Teste InterpretationMeg Medeiros
 

What's hot (20)

Introduction to Well Testing.pdf
Introduction to Well Testing.pdfIntroduction to Well Testing.pdf
Introduction to Well Testing.pdf
 
Skin Factor and Formation Damage
Skin Factor and Formation DamageSkin Factor and Formation Damage
Skin Factor and Formation Damage
 
Q913 re1 w4 lec 14
Q913 re1 w4 lec 14Q913 re1 w4 lec 14
Q913 re1 w4 lec 14
 
Geomechanical Study of Wellbore Stability
Geomechanical Study of Wellbore StabilityGeomechanical Study of Wellbore Stability
Geomechanical Study of Wellbore Stability
 
Q913 re1 w4 lec 15
Q913 re1 w4 lec 15Q913 re1 w4 lec 15
Q913 re1 w4 lec 15
 
Q921 re1 lec11 v1
Q921 re1 lec11 v1Q921 re1 lec11 v1
Q921 re1 lec11 v1
 
Well test analysis
Well test analysisWell test analysis
Well test analysis
 
Q921 re1 lec10 v1
Q921 re1 lec10 v1Q921 re1 lec10 v1
Q921 re1 lec10 v1
 
Factors effecting vertical lift performance
Factors effecting vertical lift performanceFactors effecting vertical lift performance
Factors effecting vertical lift performance
 
Reservoir rock & fluid
Reservoir rock & fluidReservoir rock & fluid
Reservoir rock & fluid
 
Gas lift design
Gas lift designGas lift design
Gas lift design
 
Applied reservoir eng
Applied reservoir engApplied reservoir eng
Applied reservoir eng
 
Reservoir simulation (april 2017)
Reservoir simulation (april 2017)Reservoir simulation (april 2017)
Reservoir simulation (april 2017)
 
Reservoir Geomechanics
Reservoir GeomechanicsReservoir Geomechanics
Reservoir Geomechanics
 
Well stimulation - petroleum engineering
Well stimulation - petroleum engineeringWell stimulation - petroleum engineering
Well stimulation - petroleum engineering
 
Q913 re1 w2 lec 6
Q913 re1 w2 lec 6Q913 re1 w2 lec 6
Q913 re1 w2 lec 6
 
Formation Damage
Formation DamageFormation Damage
Formation Damage
 
Formation pressure (PPFG) based on HW
Formation pressure (PPFG) based on HWFormation pressure (PPFG) based on HW
Formation pressure (PPFG) based on HW
 
Q922+re2+l02 v1
Q922+re2+l02 v1Q922+re2+l02 v1
Q922+re2+l02 v1
 
Well Teste Interpretation
Well Teste InterpretationWell Teste Interpretation
Well Teste Interpretation
 

Similar to Q913 re1 w3 lec 11

Q921 re1 lec9 v1
Q921 re1 lec9 v1Q921 re1 lec9 v1
Q921 re1 lec9 v1AFATous
 
Q913 re1 w3 lec 10
Q913 re1 w3 lec 10Q913 re1 w3 lec 10
Q913 re1 w3 lec 10AFATous
 
Q913 re1 w3 lec 9
Q913 re1 w3 lec 9Q913 re1 w3 lec 9
Q913 re1 w3 lec 9AFATous
 
Q913 re1 w2 lec 8
Q913 re1 w2 lec 8Q913 re1 w2 lec 8
Q913 re1 w2 lec 8AFATous
 
Q913 re1 w4 lec 16
Q913 re1 w4 lec 16Q913 re1 w4 lec 16
Q913 re1 w4 lec 16AFATous
 
Q913 re1 w3 lec 12
Q913 re1 w3 lec 12Q913 re1 w3 lec 12
Q913 re1 w3 lec 12AFATous
 
Q921 re1 lec8 v1
Q921 re1 lec8 v1Q921 re1 lec8 v1
Q921 re1 lec8 v1AFATous
 
Q913 re1 w2 lec 7
Q913 re1 w2 lec 7Q913 re1 w2 lec 7
Q913 re1 w2 lec 7AFATous
 
Application-Of-Laplace-Transform-To-Pressure-Transient-Analysis-In-A-Reservoi...
Application-Of-Laplace-Transform-To-Pressure-Transient-Analysis-In-A-Reservoi...Application-Of-Laplace-Transform-To-Pressure-Transient-Analysis-In-A-Reservoi...
Application-Of-Laplace-Transform-To-Pressure-Transient-Analysis-In-A-Reservoi...Oluwaseun Olaleye
 
On Absorption Practice, Methods and Theory: An Empirical Example
On Absorption Practice, Methods and Theory: An Empirical Example On Absorption Practice, Methods and Theory: An Empirical Example
On Absorption Practice, Methods and Theory: An Empirical Example JosephLehmann4
 
ME3330_FluidFlow_Lab_Report
ME3330_FluidFlow_Lab_ReportME3330_FluidFlow_Lab_Report
ME3330_FluidFlow_Lab_ReportJordan Benn
 
Numerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage Pump
Numerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage PumpNumerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage Pump
Numerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage Pumptheijes
 
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...IJERD Editor
 
Dymanics of open channel flow
Dymanics of open channel flowDymanics of open channel flow
Dymanics of open channel flowMohsin Siddique
 
Tubing Performance Relation (TPR)
Tubing Performance Relation (TPR)Tubing Performance Relation (TPR)
Tubing Performance Relation (TPR)James Craig
 

Similar to Q913 re1 w3 lec 11 (20)

Q921 re1 lec9 v1
Q921 re1 lec9 v1Q921 re1 lec9 v1
Q921 re1 lec9 v1
 
Q913 re1 w3 lec 10
Q913 re1 w3 lec 10Q913 re1 w3 lec 10
Q913 re1 w3 lec 10
 
Q913 re1 w3 lec 9
Q913 re1 w3 lec 9Q913 re1 w3 lec 9
Q913 re1 w3 lec 9
 
Q913 re1 w2 lec 8
Q913 re1 w2 lec 8Q913 re1 w2 lec 8
Q913 re1 w2 lec 8
 
Q913 re1 w4 lec 16
Q913 re1 w4 lec 16Q913 re1 w4 lec 16
Q913 re1 w4 lec 16
 
Q913 re1 w3 lec 12
Q913 re1 w3 lec 12Q913 re1 w3 lec 12
Q913 re1 w3 lec 12
 
Q921 re1 lec8 v1
Q921 re1 lec8 v1Q921 re1 lec8 v1
Q921 re1 lec8 v1
 
Q913 re1 w2 lec 7
Q913 re1 w2 lec 7Q913 re1 w2 lec 7
Q913 re1 w2 lec 7
 
FlowTypesRE.pdf
FlowTypesRE.pdfFlowTypesRE.pdf
FlowTypesRE.pdf
 
Texto ipr
Texto   iprTexto   ipr
Texto ipr
 
Application-Of-Laplace-Transform-To-Pressure-Transient-Analysis-In-A-Reservoi...
Application-Of-Laplace-Transform-To-Pressure-Transient-Analysis-In-A-Reservoi...Application-Of-Laplace-Transform-To-Pressure-Transient-Analysis-In-A-Reservoi...
Application-Of-Laplace-Transform-To-Pressure-Transient-Analysis-In-A-Reservoi...
 
On Absorption Practice, Methods and Theory: An Empirical Example
On Absorption Practice, Methods and Theory: An Empirical Example On Absorption Practice, Methods and Theory: An Empirical Example
On Absorption Practice, Methods and Theory: An Empirical Example
 
ME3330_FluidFlow_Lab_Report
ME3330_FluidFlow_Lab_ReportME3330_FluidFlow_Lab_Report
ME3330_FluidFlow_Lab_Report
 
A0230107
A0230107A0230107
A0230107
 
A0230107
A0230107A0230107
A0230107
 
Numerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage Pump
Numerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage PumpNumerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage Pump
Numerical Calculation of Solid-Liquid two-Phase Flow Inside a Small Sewage Pump
 
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
 
Dymanics of open channel flow
Dymanics of open channel flowDymanics of open channel flow
Dymanics of open channel flow
 
Tubing Performance Relation (TPR)
Tubing Performance Relation (TPR)Tubing Performance Relation (TPR)
Tubing Performance Relation (TPR)
 

More from AFATous

جزوه درس نمودارگیری از چاه، ویرایش ششم
جزوه درس نمودارگیری از چاه، ویرایش ششم جزوه درس نمودارگیری از چاه، ویرایش ششم
جزوه درس نمودارگیری از چاه، ویرایش ششم AFATous
 
جزوه درس مهندسی حفاری دو، ویرایش ششم
جزوه درس مهندسی حفاری دو، ویرایش ششم جزوه درس مهندسی حفاری دو، ویرایش ششم
جزوه درس مهندسی حفاری دو، ویرایش ششم AFATous
 
جزوه درس مهندسی بهره برداری دو، ویرایش دوم
جزوه درس مهندسی بهره برداری دو، ویرایش دومجزوه درس مهندسی بهره برداری دو، ویرایش دوم
جزوه درس مهندسی بهره برداری دو، ویرایش دومAFATous
 
جزوه درس مهندسی حفاری یک،ویرایش ششم
جزوه درس مهندسی حفاری یک،ویرایش ششمجزوه درس مهندسی حفاری یک،ویرایش ششم
جزوه درس مهندسی حفاری یک،ویرایش ششمAFATous
 
جزوه درس انگیزش چاه (اسیدکاری)، ویرایش دوم
جزوه درس انگیزش چاه (اسیدکاری)، ویرایش دومجزوه درس انگیزش چاه (اسیدکاری)، ویرایش دوم
جزوه درس انگیزش چاه (اسیدکاری)، ویرایش دومAFATous
 
Q933+log reference fa lec
Q933+log reference fa lecQ933+log reference fa lec
Q933+log reference fa lecAFATous
 
Q933+log reference fa lec 4x1
Q933+log reference fa lec 4x1Q933+log reference fa lec 4x1
Q933+log reference fa lec 4x1AFATous
 
Q933+po2 reference fa lec
Q933+po2 reference fa lecQ933+po2 reference fa lec
Q933+po2 reference fa lecAFATous
 
Q933+po2 reference fa lec 4x1
Q933+po2 reference fa lec 4x1Q933+po2 reference fa lec 4x1
Q933+po2 reference fa lec 4x1AFATous
 
Q933+de2 reference fa lec 4x1
Q933+de2 reference fa lec 4x1Q933+de2 reference fa lec 4x1
Q933+de2 reference fa lec 4x1AFATous
 
Q933+de2 reference fa lec
Q933+de2 reference fa lecQ933+de2 reference fa lec
Q933+de2 reference fa lecAFATous
 
Q933+de1 reference fa lec 4x1
Q933+de1 reference fa lec 4x1Q933+de1 reference fa lec 4x1
Q933+de1 reference fa lec 4x1AFATous
 
Q933+de1 reference fa lec
Q933+de1 reference fa lecQ933+de1 reference fa lec
Q933+de1 reference fa lecAFATous
 
Q932+log reference fa lec 4 x1
Q932+log reference fa lec 4 x1Q932+log reference fa lec 4 x1
Q932+log reference fa lec 4 x1AFATous
 
Q932+stm reference fa lec 4x1
Q932+stm reference fa lec 4x1Q932+stm reference fa lec 4x1
Q932+stm reference fa lec 4x1AFATous
 
Q932+rrl reference fa lec
Q932+rrl reference fa lecQ932+rrl reference fa lec
Q932+rrl reference fa lecAFATous
 
Q932+stm reference fa lec
Q932+stm reference fa lecQ932+stm reference fa lec
Q932+stm reference fa lecAFATous
 
Q932+rrl reference fa lec 4x1
Q932+rrl reference fa lec 4x1Q932+rrl reference fa lec 4x1
Q932+rrl reference fa lec 4x1AFATous
 
Q932+sgo reference fa lec 4x1
Q932+sgo reference fa lec 4x1Q932+sgo reference fa lec 4x1
Q932+sgo reference fa lec 4x1AFATous
 
Q932+sgo reference fa lec
Q932+sgo reference fa lecQ932+sgo reference fa lec
Q932+sgo reference fa lecAFATous
 

More from AFATous (20)

جزوه درس نمودارگیری از چاه، ویرایش ششم
جزوه درس نمودارگیری از چاه، ویرایش ششم جزوه درس نمودارگیری از چاه، ویرایش ششم
جزوه درس نمودارگیری از چاه، ویرایش ششم
 
جزوه درس مهندسی حفاری دو، ویرایش ششم
جزوه درس مهندسی حفاری دو، ویرایش ششم جزوه درس مهندسی حفاری دو، ویرایش ششم
جزوه درس مهندسی حفاری دو، ویرایش ششم
 
جزوه درس مهندسی بهره برداری دو، ویرایش دوم
جزوه درس مهندسی بهره برداری دو، ویرایش دومجزوه درس مهندسی بهره برداری دو، ویرایش دوم
جزوه درس مهندسی بهره برداری دو، ویرایش دوم
 
جزوه درس مهندسی حفاری یک،ویرایش ششم
جزوه درس مهندسی حفاری یک،ویرایش ششمجزوه درس مهندسی حفاری یک،ویرایش ششم
جزوه درس مهندسی حفاری یک،ویرایش ششم
 
جزوه درس انگیزش چاه (اسیدکاری)، ویرایش دوم
جزوه درس انگیزش چاه (اسیدکاری)، ویرایش دومجزوه درس انگیزش چاه (اسیدکاری)، ویرایش دوم
جزوه درس انگیزش چاه (اسیدکاری)، ویرایش دوم
 
Q933+log reference fa lec
Q933+log reference fa lecQ933+log reference fa lec
Q933+log reference fa lec
 
Q933+log reference fa lec 4x1
Q933+log reference fa lec 4x1Q933+log reference fa lec 4x1
Q933+log reference fa lec 4x1
 
Q933+po2 reference fa lec
Q933+po2 reference fa lecQ933+po2 reference fa lec
Q933+po2 reference fa lec
 
Q933+po2 reference fa lec 4x1
Q933+po2 reference fa lec 4x1Q933+po2 reference fa lec 4x1
Q933+po2 reference fa lec 4x1
 
Q933+de2 reference fa lec 4x1
Q933+de2 reference fa lec 4x1Q933+de2 reference fa lec 4x1
Q933+de2 reference fa lec 4x1
 
Q933+de2 reference fa lec
Q933+de2 reference fa lecQ933+de2 reference fa lec
Q933+de2 reference fa lec
 
Q933+de1 reference fa lec 4x1
Q933+de1 reference fa lec 4x1Q933+de1 reference fa lec 4x1
Q933+de1 reference fa lec 4x1
 
Q933+de1 reference fa lec
Q933+de1 reference fa lecQ933+de1 reference fa lec
Q933+de1 reference fa lec
 
Q932+log reference fa lec 4 x1
Q932+log reference fa lec 4 x1Q932+log reference fa lec 4 x1
Q932+log reference fa lec 4 x1
 
Q932+stm reference fa lec 4x1
Q932+stm reference fa lec 4x1Q932+stm reference fa lec 4x1
Q932+stm reference fa lec 4x1
 
Q932+rrl reference fa lec
Q932+rrl reference fa lecQ932+rrl reference fa lec
Q932+rrl reference fa lec
 
Q932+stm reference fa lec
Q932+stm reference fa lecQ932+stm reference fa lec
Q932+stm reference fa lec
 
Q932+rrl reference fa lec 4x1
Q932+rrl reference fa lec 4x1Q932+rrl reference fa lec 4x1
Q932+rrl reference fa lec 4x1
 
Q932+sgo reference fa lec 4x1
Q932+sgo reference fa lec 4x1Q932+sgo reference fa lec 4x1
Q932+sgo reference fa lec 4x1
 
Q932+sgo reference fa lec
Q932+sgo reference fa lecQ932+sgo reference fa lec
Q932+sgo reference fa lec
 

Recently uploaded

How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17Celine George
 
In - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxIn - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxAditiChauhan701637
 
P4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdf
P4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdfP4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdf
P4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdfYu Kanazawa / Osaka University
 
Presentation on the Basics of Writing. Writing a Paragraph
Presentation on the Basics of Writing. Writing a ParagraphPresentation on the Basics of Writing. Writing a Paragraph
Presentation on the Basics of Writing. Writing a ParagraphNetziValdelomar1
 
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdfMaximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdfTechSoup
 
Benefits & Challenges of Inclusive Education
Benefits & Challenges of Inclusive EducationBenefits & Challenges of Inclusive Education
Benefits & Challenges of Inclusive EducationMJDuyan
 
How to Add a New Field in Existing Kanban View in Odoo 17
How to Add a New Field in Existing Kanban View in Odoo 17How to Add a New Field in Existing Kanban View in Odoo 17
How to Add a New Field in Existing Kanban View in Odoo 17Celine George
 
The Stolen Bacillus by Herbert George Wells
The Stolen Bacillus by Herbert George WellsThe Stolen Bacillus by Herbert George Wells
The Stolen Bacillus by Herbert George WellsEugene Lysak
 
Diploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdfDiploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdfMohonDas
 
CAULIFLOWER BREEDING 1 Parmar pptx
CAULIFLOWER BREEDING 1 Parmar pptxCAULIFLOWER BREEDING 1 Parmar pptx
CAULIFLOWER BREEDING 1 Parmar pptxSaurabhParmar42
 
Practical Research 1 Lesson 9 Scope and delimitation.pptx
Practical Research 1 Lesson 9 Scope and delimitation.pptxPractical Research 1 Lesson 9 Scope and delimitation.pptx
Practical Research 1 Lesson 9 Scope and delimitation.pptxKatherine Villaluna
 
5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...CaraSkikne1
 
UKCGE Parental Leave Discussion March 2024
UKCGE Parental Leave Discussion March 2024UKCGE Parental Leave Discussion March 2024
UKCGE Parental Leave Discussion March 2024UKCGE
 
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRADUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRATanmoy Mishra
 
How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17Celine George
 
What is the Future of QuickBooks DeskTop?
What is the Future of QuickBooks DeskTop?What is the Future of QuickBooks DeskTop?
What is the Future of QuickBooks DeskTop?TechSoup
 
General views of Histopathology and step
General views of Histopathology and stepGeneral views of Histopathology and step
General views of Histopathology and stepobaje godwin sunday
 
Education and training program in the hospital APR.pptx
Education and training program in the hospital APR.pptxEducation and training program in the hospital APR.pptx
Education and training program in the hospital APR.pptxraviapr7
 
How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17Celine George
 

Recently uploaded (20)

How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17
 
In - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxIn - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptx
 
Prelims of Kant get Marx 2.0: a general politics quiz
Prelims of Kant get Marx 2.0: a general politics quizPrelims of Kant get Marx 2.0: a general politics quiz
Prelims of Kant get Marx 2.0: a general politics quiz
 
P4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdf
P4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdfP4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdf
P4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdf
 
Presentation on the Basics of Writing. Writing a Paragraph
Presentation on the Basics of Writing. Writing a ParagraphPresentation on the Basics of Writing. Writing a Paragraph
Presentation on the Basics of Writing. Writing a Paragraph
 
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdfMaximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
 
Benefits & Challenges of Inclusive Education
Benefits & Challenges of Inclusive EducationBenefits & Challenges of Inclusive Education
Benefits & Challenges of Inclusive Education
 
How to Add a New Field in Existing Kanban View in Odoo 17
How to Add a New Field in Existing Kanban View in Odoo 17How to Add a New Field in Existing Kanban View in Odoo 17
How to Add a New Field in Existing Kanban View in Odoo 17
 
The Stolen Bacillus by Herbert George Wells
The Stolen Bacillus by Herbert George WellsThe Stolen Bacillus by Herbert George Wells
The Stolen Bacillus by Herbert George Wells
 
Diploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdfDiploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdf
 
CAULIFLOWER BREEDING 1 Parmar pptx
CAULIFLOWER BREEDING 1 Parmar pptxCAULIFLOWER BREEDING 1 Parmar pptx
CAULIFLOWER BREEDING 1 Parmar pptx
 
Practical Research 1 Lesson 9 Scope and delimitation.pptx
Practical Research 1 Lesson 9 Scope and delimitation.pptxPractical Research 1 Lesson 9 Scope and delimitation.pptx
Practical Research 1 Lesson 9 Scope and delimitation.pptx
 
5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...
 
UKCGE Parental Leave Discussion March 2024
UKCGE Parental Leave Discussion March 2024UKCGE Parental Leave Discussion March 2024
UKCGE Parental Leave Discussion March 2024
 
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRADUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
 
How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17
 
What is the Future of QuickBooks DeskTop?
What is the Future of QuickBooks DeskTop?What is the Future of QuickBooks DeskTop?
What is the Future of QuickBooks DeskTop?
 
General views of Histopathology and step
General views of Histopathology and stepGeneral views of Histopathology and step
General views of Histopathology and step
 
Education and training program in the hospital APR.pptx
Education and training program in the hospital APR.pptxEducation and training program in the hospital APR.pptx
Education and training program in the hospital APR.pptx
 
How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17
 

Q913 re1 w3 lec 11

  • 1. Reservoir Engineering 1 Course (1st Ed.)
  • 2. 1. USS(LT) Regime for Radial flow of SC Fluids: Finite-Radial Reservoir 2. Relation between pD and Ei 3. USS Regime for Radial Flow of C Fluids A. (Exact Method) B. (P2 Approximation Method) C. (P Approximation Method) 4. PSS regime Flow Constant
  • 3. 1. PSS A. B. C. D. Average Reservoir Pressure PSS regime for Radial Flow of SC Fluids Effect of Well Location within the Drainage Area PSS Regime for Radial Flow of C Fluids 2. Skin Concept 3. Using S for Radial Flow in Flow Equations
  • 5. Average Reservoir Pressure in PSS Because the pressure at every point in the reservoir is changing at the same rate, it leads to the conclusion that the average reservoir pressure is changing at the same rate. This average reservoir pressure is essentially set equal to the volumetric average reservoir pressure p– r. It is the pressure that is used to perform flow calculations during the semisteady state flowing condition. 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 5
  • 6. Average Reservoir Pressure Calculation in PSS In the above discussion, p– r indicates that, in principal, the above Equation can be used to estimate by replacing the pressure decline rate dp/dt with (pi − p– r)/t, or: (t is approximately the elapsed time since the end of the transient flow regime to the time of interest.) 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 6
  • 7. Volumetric Average Pressure of the Entire Reservoir It should be noted that when performing material balance calculations, the volumetric average pressure of the entire reservoir is used to calculate the fluid properties. This pressure can be determined from the individual well drainage properties as follows: Where Vi = pore volume of the ith drainage volume p–ri = volumetric average pressure within the ith drainage volume. 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 7
  • 8. Using the Flow Rate in Volumetric Avg Reservoir Pressure Figure illustrates the concept of the volumetric average pressure. In practice, the Vi’s are difficult to determine and, therefore, it is common to use the flow rate qi. 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 8
  • 9. Applications of the Pseudosteady-State Flow The practical applications of using the pseudosteady-state flow condition to describe the flow behavior of the following two types of fluids are presented below: Radial flow of slightly compressible fluids Radial flow of compressible fluids 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 9
  • 11. Diffusivity Equation in PSS The diffusivity equation as expressed previously for the transient flow regime is: For the semisteady-state flow, the term (∂p/∂t) is constant so: 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 11
  • 12. Radial Flow of Slightly Compressible Fluids Calculation Where c1 is the constant of the integration and can be evaluated by imposing the outer no-flow boundary condition [i.e., (∂p/∂r) re = 0] on the above relation to give: 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 12
  • 13. Flow Rate for Radial Flow of Slightly Compressible Fluids (PSS) Performing the above integration and assuming (rw 2 /re 2) is negligible gives: A more appropriate form of the above is to solve for the flow rate, to give: 2013 H. AlamiNia Where Q = flow rate, STB/day B = formation volume factor, bbl/STB k = permeability, md Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 13
  • 14. Q Vs. Average Reservoir Pressure for PSS Regime The volumetric average reservoir pressure p– r is commonly used in calculating the liquid flow rate under the semisteady-state flowing condition. Introducing the p– r into previous Equation gives: (the volumetric average pressure p–r occurs at about 47% of the drainage radius during the semisteady-state condition.) 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 14
  • 16. Using Pd Solution (PSS) It is interesting to notice that the dimensionless pressure pD solution to the diffusivity equation can be used to derive previous Equation. 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 16
  • 17. Effect of Geometry on PSS Flow It should be pointed out that the pseudosteadystate flow occurs regardless of the geometry of the reservoir. Irregular geometries also reach this state when they have been produced long enough for the entire drainage area to be affected. 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 17
  • 18. Shape Factor Rather than developing a separate equation for each geometry, Ramey and Cobb (1971) introduced a correction factor that is called the shape factor, CA, which is designed to account for the deviation of the drainage area from the ideal circular form. The shape factor, accounts also for the location of the well within the drainage area. 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 18
  • 19. Shape Factor Tables 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 19
  • 20. Solutions Using CA Introducing CA into following Equation and performing the solution procedure gives the following two solutions: In terms of the volumetric average pressure p–r: In terms of the initial reservoir pressure pi: 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 20
  • 22. Radial Flow of Compressible Fluids (Gases) (PSS)  The radial diffusivity equation was developed to study the performance of compressible fluid under unsteady-state conditions. The equation has the following form:  For the semisteady-state flow, the rate of change of the real gas pseudopressure with respect to time is constant, i.e.,  Using the same technique identical to that described previously for liquids gives the following exact solution to the diffusivity equation:  Where Qg = gas flow rate, Mscf/day  T = temperature, °R  k = permeability, md 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 22
  • 23. Approximations for Radial Flow of Gases (PSS) Two approximations to the above solution are widely used. These approximations are: Pressure-squared approximation Pressure-approximation 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 23
  • 24. P2 Approximation As outlined previously, the method provides us with compatible results to that of the exact solution approach when p < 2000. The solution has the following familiar form: The gas properties z– and μ are evaluated at: 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 24
  • 25. P Approximation This approximation method is applicable at p>3000 psi and has the following mathematical form: With the gas properties evaluated at: 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 25
  • 28. Assumptions in Deriving the Flow Equations In deriving the flow equations, the following two main assumptions were made: Uniform permeability throughout the drainage area Laminar (viscous) flow 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 28
  • 29. Correction Factors for Assumptions Before using any of the previous mathematical solutions to the flow equations, the solution must be modified to account for the possible deviation from the above two assumptions. Introducing the following two correction factors into the solution of the flow equation can eliminate the above two assumptions: Skin factor Turbulent flow factor 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 29
  • 30. Wellbore Damage It is not unusual for materials such as mud filtrate, cement slurry, or clay particles to enter the formation during drilling, completion, or workover operations and reduce the permeability around the wellbore. This effect is commonly referred to as a wellbore damage and The region of altered permeability is called the skin zone. 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 30
  • 31. Skin Zone Skin zone can extend from a few inches to several feet from the wellbore. Many other wells are stimulated by acidizing or fracturing, which in effect increase the permeability near the wellbore. Thus, the permeability near the wellbore is always different from the permeability away from the well where the formation has not been affected by drilling or stimulation. 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 31
  • 32. Near Wellbore Skin Effect A schematic illustration of the skin zone is shown in Figure. 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 32
  • 33. Skin Effect Those factors that cause damage to the formation can produce additional localized pressure drop during flow. This additional pressure drop is commonly referred to as Δpskin. On the other hand, well stimulation techniques will normally enhance the properties of the formation and increase the permeability around the wellbore, so that a decrease in pressure drop is observed. The resulting effect of altering the permeability around the well bore is called the skin effect. 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 33
  • 34. Skin Types Figure compares the differences in the skin zone pressure drop for three possible outcomes: Δpskin > 0, indicates an additional pressure drop due to wellbore damage, i.e., kskin < k. Δpskin < 0, indicates less pressure drop due to wellbore improvement, i.e., kskin > k. Δpskin = 0, indicates no changes in the wellbore condition, i.e., kskin = k. 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 34
  • 35. Skin Zone Pressure Drop Hawkins (1956) suggested that the permeability in the skin zone, i.e., kskin, is uniform and the pressure drop across the zone can be approximated by Darcy’s equation. Hawkins proposed the following approach: 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 35
  • 36. Skin Factor The additional pressure drop expression is commonly expressed in the following form: Where s is called the skin factor and defined as: 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 36
  • 37. Positive Skin Factor Positive Skin Factor, s > 0 When a damaged zone near the wellbore exists, kskin is less than k and hence s is a positive number. The magnitude of the skin factor increases as kskin decreases and as the depth of the damage rskin increases. 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 37
  • 38. Negative Skin Factor Negative Skin Factor, s < 0 When the permeability around the well kskin is higher than that of the formation k, a negative skin factor exists. This negative factor indicates an improved wellbore condition. a negative skin factor will result in a negative value of Δpskin. This implies that a stimulated well will require less pressure drawdown to produce at rate q than an equivalent well with uniform permeability. 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 38
  • 39. Zero Skin Factor Zero Skin Factor, s = 0 Zero skin factor occurs when no alternation in the permeability around the wellbore is observed, i.e., kskin = k. 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 39
  • 41. Modification of the Flow Equations The proposed modification of the previous flow equation is based on the concept that the actual total pressure drawdown will increase or decrease by an amount of Δpskin. Assuming that (Δp) ideal represents the pressure drawdown for a drainage area with a uniform permeability k, then: The concept can be applied to all the previous flow regimes to account for the skin zone around the wellbore. 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 41
  • 42. S in SS Regime for Radial Flow of SC Fluids  Where         Qo = oil flow rate, STB/day k = permeability, md h = thickness, ft s = skin factor Bo = oil formation volume factor, bbl/STB μo = oil viscosity, cp pi = initial reservoir pressure, psi pwf = bottom hole flowing pressure, psi 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 42
  • 43. S in USS Regime for Radial flow of SC Fluids 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 43
  • 44. S in USS Regime of Radial Flow of C Fluids 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 44
  • 45. S in PSS regime for Radial Flow of SC Fluids 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 45
  • 46. S in PSS Regime for Radial Flow of C Fluids Where: Qg = gas flow rate, Mscf/day k = permeability, md T = temperature, °R (μ–g) = gas viscosity at average pressure p–, cp z–g = gas compressibility factor at average pressure p– 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 46
  • 47. Effective (Apparent) Wellbore Radius Matthews and Russell (1967) proposed an alternative treatment to the skin effect by introducing the effective or apparent wellbore radius rwa that accounts for the pressure drop in the skin. They define rwa by the following equation: All of the ideal radial flow equations can be also modified for the skin by simply replacing wellbore radius rw with that of the apparent wellbore radius rwa. 2013 H. AlamiNia Reservoir Engineering 1 Course: PSS Regime for Radial Flow of SC & C Fluids and Skin Effect 47
  • 48. 1. Ahmed, T. (2006). Reservoir engineering handbook (Gulf Professional Publishing). Ch6
  • 49. 1. Turbulent Flow 2. Superposition A. Multiple Well B. Multi Rate C. Reservoir Boundary