Upcoming SlideShare
×

# Well Foundation

24,288 views
23,586 views

Published on

presentation of work on site of the construction of high level bridge over Sutlej river. most of the work is related to sinking of well foundation.

Published in: Education
52 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Nice like it

Are you sure you want to  Yes  No
• very good

Are you sure you want to  Yes  No

Are you sure you want to  Yes  No
• good presentation

Are you sure you want to  Yes  No
Views
Total views
24,288
On SlideShare
0
From Embeds
0
Number of Embeds
5
Actions
Shares
0
0
4
Likes
52
Embeds 0
No embeds

No notes for slide

### Well Foundation

1. 1. CONSTRUCTION OF HIGH LEVEL BRIDGE OVER SUTLEJ RIVER WELL FOUNDATION
2. 2. PROJECT BREIFING This bridge forms a part of a bye-pass project near Ropar The project is undertaken by B&R division of PWD. Total cost of the bridge over Sutlej is 63 crs. The contract is given to the company on the lump sum basis. Length 982 m Lanes 4 lane Spans 28 Length of span 36.5 m ( middle 23 spans) 24 m (end spans) Formation level 273.5 m High flood level 264.2 m
3. 3. Alignment•Alignment of thebridge passes through :New I.I.T. RoadSutlej riverNwansheher highway•Alignment crosses riverat an angle therefore itis a Skew alignment
4. 4. Height of Bridge Bridge is high level bridge i.e. formation level is above H.F.L. Height if bridge is determined by examining the clearance of bridge over highway As per IRC 5:1998Min. clearance needed = 5 mRoad level =267Width of beam and slab =1.7 mReq. formation level= 273.7 mActual formation level=274.7 m
5. 5. Extent of exploration The exploration shall cover the entire length of the bridge and also extend at either side for a distance of about twice the depth below bed of the last main foundations i.e. if depth of foundation below bed is 24mts. then exploration will be done up to 48mts away from ends. The depth of exploration should be at least 1 ½ times the minimum width of the foundation below the proposed foundation level in case of open foundations and deep well foundation Where such investigation end in any unsuitable or questionable foundation material, the exploration shall be extended to a sufficient depth into firm and stable soil or rock but not less than four times the minimum depth of foundation below the earlier contemplated foundation level.
6. 6. Scour depth Depth of scour below the high flood level. Scour depth has important in determination depth of foundation.Determination The maximum depth of scour should be measured with reference to existing structures near the proposed bridge site, if this is possible. Such soundings are best done during or immediately after a flood. Mean scour depth (dsm )= 9.2 m Max. scour depth for piers = 2 dsm = 18.4 m
7. 7. Depth of foundation Well foundation are taken up to depth such that min. grip of foundation below max. scour depth is 1/3 rd of max. scour depth. The max. Bearing pressure on the subsoil under the foundation resulting from any combination of the loads and forces except wind and seismic forces should not exceed the safe bearing capacity of the subsoil, after taking into account the effect of scour.
8. 8. WELLFOUNDATION•Well foundation liesunder the category ofopen caisson•They are open at bothends
9. 9. WellComponentsCutting edgeWell curbWell steiningBottom plugSand fillTop plugWell cap
10. 10. Cutting edge•Cutting edge is the lowermostpart of a well It is the partwhich cuts through the earth.•The mild steel cutting edgeshall be made from structuralsteel sections.• The cutting edge shall weighnot less than 40 kg per metrelength and be properlyanchored into the well curb• sections are bent into shapeby cold bended no heating is The picture above shows a three 160mm MSdone. Sections curved and welded to form Cutting Edge.
11. 11. Well curb•Well curb is a structure withouter wall of curb being straightand inner at an appropriate anglewhich is fabricated over cuttingedge.•The internal angle of curb can bekept between 30O to 37o .•It serves the purpose oftransferring•Load from steining to bottomplug.•Thickness of well curb is 75mmmore than that of steining toprevent tilts A fabricated well curb set atop wooden planks
12. 12. Well curb Reinforcements in a well curb Vertical bars -20 dia.Triangular bars -20 dia.
13. 13. Well steining It is the longest part of well and it transfers load from well cap to the well curb at desired depth. Track of length is taken by marking wells on 4 sides by gauges. Steining is built in lifts of 2.15m and each lift is aligned with previous one. As per IRC 78:2001. The amount of vertical reinforcement provided should not be less than .2% of cross sectional area of steining.2. At the inner face reinforcement must not be less than .06% of area.3. Transverse reinforcement must not be less than .04% of volume/unit length of steining.
14. 14. Reinforcements in steining For wells 12 to 23 Outer dia.= 5.35 m inner dia. = 3.4 m Area of steining= 13.394 Min. reinforcement for steining (20 dia. Bars)= .02*area/area of bar = 85.3 = 86 bars Actual no. =62+26 =88 bars Min. reinforcements for inner wall(20 dia.)=.oo6*area/area of bar =25.59 = 26 bars Actual no. =26 bars
15. 15. Well steining Determination of thickness of steining The min. thickness should not be less than 500mm and should be according: h=kd√l where : h- min. thickness in m d=external dia. Of well l=depth of well below well cap k= a constant = 0.03 At the site: avg. depth of well = 25m dia. = 5.2m So Min. thickness required = .78 m
16. 16. Well steining But some adjustments are needed in thickness according to the strata as given by the table: Strata Adjustment Very soft clay strata -10% Hard clay strata +10% Boulder strata or well resting on rock +10% As the strata is sand with boulders final thickness is = .858 m Original thickness =.78 m (well no. 1-11 and 24 -29) = .88m (well no. 12-23)
17. 17.  Bottom plug- transfers the load of structure from well to the ground. It is cast under water after the final depth of well is reached. No reinforcement is provided. The mix should have min. cement content of 330Kg/m3 Sand filling : Sand filling shall commence after a period of 3 days of laying of bottom plug. It helps in increasing the weight of the foundation which provides more stability to the structure. It also counteract buoyant force of water. Intermediate plug :The function of the plug is to keep the sand filling sandwiched & undisturbed. The concrete used for intermediate plugging is also M25. Top plug :After filling sand up to the required level a plug of concrete is provided over it as shown on the drawing. It at least serves as a shuttering for laying well cap. Well cap- It is needed to transfer the loads and moments from the pier to the well or wells below. It is designed as two way slab.
18. 18. Well parametersParameters Data 59 n0. 1. Total no. of wells to be sunk M 30 2. Grade of concrete used for well curb and steinning: M 25 3. Grade of concrete used for bottom, intermediate and top plugging OPC 43-G 4. Type of Cement used FE 500 5. Grade of steel used for reinforcement: 9m 7. Scouring levels from previous years data: 16 mm 9. Thickness of the cutting edge:
19. 19. Well parametersParameters Data Depth of the wells below ground: Well no. 1 to 11:24.0 m Well no. 12 to 23: 26.5 m Well no. 24 to 29: 24.0 m Height of well curb: well no. 1 to 11 and 24,25: 1.410 m Well no. 12 to 25: 1.530 Thickness of the well steinning: Well no. 1 to 11: 780 mm Well no. 12 to 23: 880 mm Well no. 24 to 29: 780 mm
20. 20. Construction of wellSetting of well curb Sinking of well Bottom plugging Sand filling Closing of top by well cap
21. 21. Setting of well curb The centre of the well is marked accurately with help of theodolite. Cutting edge is placed on the wooden sleepers such that centre of cutting edge coincide with the marked centre. Reinforcements and formwork for curb is fabricated on the cutting edge and concreting is done. After curing of well curb is complete the wooden slippers below the curb are removed by making soil below them diluted by water and is allowed to sink under its own weight. In this picture a well curb is resting on the wooden slippers
22. 22. Sinking of well/Construction of steinning 1. Fabrication 3. Dredging of of formwork earth to and support sinking reinforcements 2. Concreting
23. 23. Sinking of Well Fabrication of Formwork Fabrication Concreting The formwork for casting are Concreting is done by supported on the pumping the concrete to channels bolted with the mould by concrete steining on both pump. sides. The concrete is placed in 400mm thick layers As per design lap is along with continues provided after every vibrations. fourth On avg. about 23m3 of reinforcement at concrete is needed for same section. casting of one lift.
24. 24. Sinking of Well Dredging In order to sink the well, continuous dredging is done. Soil is excavated from the dredge hole inside the well. The dredging operation is performed evenly along the hole circular hole
25. 25. Construction of well Bottom plugging : it is done after the well has reached the founding level. Concreting is done inside water. For this tremie pipe is used. A tremie is long funnel made of mild steel . A flap door is provided at its bottom. Well cap:After water filling, a truss system consisting of three trusses supported in well steining and cribs welded with it in criss-cross manner are used for top plugging. This system is covered with strong plywood and sealed with concrete slurry so that nothing can enter inside the well. Hence preparing it for the casting of well cap.
26. 26. Methods to promote sinking Kentledge -Total of 125 concrete cubes of 1m3 in size are made for kentledge loading which is approximately equal to 25t × 125. Chiseling- When the boulders are very firmly cemented then chiselling is done. In this soil is hit hard by sharp end chisel. Dewatering- dewatering of dredge hole is done to reduce buyout force on well thus promoting sinking. Flushing with jet of water on the outside face of well reducing skin friction
27. 27. Tilt and shift Tilt and shift are deviation of well from its proposed position and orientation. Max. tilt allowed is 1/80 Max. shift allowed is 150mmMeasures to avoid tilt and shift The outer surface of steining and curb should be kept as smooth as possible. The radius of well curb should be kept more than the steining. The dredging should be done on all sides of well uniformly.Causes Eccentric dredging Can be caused due to boulder under one side
28. 28. Method of checking tilt and shift Tilt and shift are calculated with the help of a level and total station.Method Difference between height of points (1& 3)= R.L.(1)-R.L.(3) Tilt = [ R.L.(1)-R.L.(3)]/diameter Shift at bottom from top position = tilt/ length Note : this process is repeated on sides (2 & 4) and in similar manner tilt is obtained and then combined tilt and shift is reported. Shift of well at top is measured by total station.
29. 29. Correcting tilt and shift Regulation of Grabbing Eccentric Loading Strutting The well Water jetting or Digging Pit outside the higher side of well Pulling the well or caisson Excavation on the higher side outside the well
30. 30. Problems Sand blowing- This problem occurs when well bottom rests on sandy strata and dewatering is done below water table. In this sand from ground gushes into the well and there is sudden sinking of well. This sudden sinking is very dangerous and is very difficult to rectify. Bridge scour -is the removal of sediment from bed such as sand and rocks from around bridge, abutments or piers. Scour, caused by swiftly moving water, can scoop out scour holes, compromising the integrity of a structure. Sand heaving-When a well passes through soft strata over a considerable depth, the upward resistance acting on the outside surface of the well is less than the weight of the well. In that situation the well sinks down and quite often a heap is formed inside the dredge hole.
31. 31. ProblemsBridge scour Sand heaving
32. 32. Thank You