Suffolk - Detecting Depression Primary Vs Secondary Care (Nov09)

557 views
487 views

Published on

Invited talk for the 2009 Suffolk conference (Bury St Edmonds) on No Physical Health without Mental Health.

Published in: Health & Medicine
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
557
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
12
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Suffolk - Detecting Depression Primary Vs Secondary Care (Nov09)

  1. 1. Detecting Depression in Primary & Secondary Care Evidence Based Comparison Alex Mitchell alex.mitchell@leicspart.nhs.uk Consultant in Liaison Psychiatry Bury St Edmonds - No Physical Health Without Mental Health 2009
  2. 2. Introduction to Physical/Mental Comorbidity
  3. 3. No Physical Health Without Mental Health • Awareness of the link between physical and mental health • Liaison Mental Health Services • Engaging Patients and Carers • Re-organisation, Quality & Commissioning • Training and Education
  4. 4. Quality of preventive care Quality of medical care Quality of cardiac care
  5. 5. Quality of Care MI vs No MI 27 examined receipt of medical care in those with and without mental illness 19/27 showed deficits in care 10 examined medical care in those with and without substance use disorder (or dual-diagnosis 10/10 showed deficits in care
  6. 6. Quality of Medical Treatment i Procedures HR =0.89 p<0.004 Summary meta-analysis plot [random effects] Petersen 2003 [Angiography] 0.90 (0.83, 0.98) Jones 2005 [CABG] 0.91 (0.75, 1.09) Plomondon 2007 [CABG] 1.02 (0.99, 1.06) Druss 2000 [CABG] 0.90 (0.85, 0.96) Plomondon 2007 [Cath] 1.05 (0.98, 1.13) Druss 2000 [Cath] 0.74 (0.70, 0.78) Jones 2005 [PTCA] 1.04 (0.98, 1.10) Druss 2000 [PTCA] 0.96 (0.91, 1.02) Plomondon 2007 [PCI] 1.06 (0.97, 1.15) Druss 2001 [Revascularisation] 0.74 (0.56, 0.95) Lawrence 2003 [Revascularisation Men] 0.31 (0.21, 0.45) Lawrence 2003 [Revascularisation Women] 0.34 (0.18, 0.64) Petersen 2003 [Revascularisation] 0.89 (0.79, 0.98) Kisely 2007 [Revascularisation] 0.92 (0.86, 1.07) combined 0.89 (0.82, 0.96) 0.1 0.2 0.5 1 2 relative risk (95% confidence interval)
  7. 7. Quality of Medical Treatment ii Medication OR =0.92 OR =0.79 OR =0.72 Summary meta-analysis plot [random effects] Summary meta-analysis plot [random effects] Summary meta-analysis plot [random effects] ACE (Kreyenbuhl) 0.23 (0.12, 0.44) ACE (Druss2001) 0.81 (0.65, 0.98) ACE (Kreyenbuhl) 0.46 (0.18, 1.19) ACE-I or ARBb (Weiss) 0.83 (0.61, 1.14) ACE (Petersen) 0.92 (0.79, 1.09) Arthritis (Redelmeier) 0.59 (0.57, 0.62) Aspirin (Desai) 0.75 (0.39, 1.43) ACE-I or ARBb (Plomondon) 0.93 (0.84, 1.01) Aspirin (Desai) 1.07 (0.49, 2.30) Bblocker (Desai) 0.70 (0.48, 1.03) Aspirin (Hippisley-Cox) 1.00 (0.97, 1.04) Aspirin (Druss2001) 0.81 (0.65, 0.98) Bblocker (Hippisley-Cox) 1.18 (0.94, 1.56) Aspirin (Weiss) 0.89 (0.64, 1.24) Aspirin (Petersen) 0.96 (0.81, 1.15) Bblocker (Wang) 0.55 (0.45, 0.55) Bblocker (Desai) 0.70 (0.43, 1.15) Aspirin (Plomondon) 0.93 (0.83, 1.04) Bblocker (Hippisley-Cox) 0.96 (0.88, 1.06) Chemotherapy (Goodwin) 0.65 (0.43, 1.00) Bblocker (Weiss) 0.96 (0.54, 1.71) Cholesterol (Desai) 1.31 (0.57, 3.00) Bblocker (Druss2001) 0.85 (0.72, 0.98) Cholesterol (Desai) 1.01 (0.37, 2.77) Bblocker (Plomondon) 1.11 (0.97, 1.28) Cholesterol (Hippisley-Cox) 0.86 (0.70, 12.30) Cholesterol (Weiss) 1.85 (1.11, 3.09) HAART (Tegger) 0.36 (0.25, 0.50) BBlockers (Petersen) 0.78 (0.69, 0.92) Insulin (Weiss) 1.44 (0.96, 2.16) Osteoporosis (Bishop) 0.38 (0.15, 0.97) HAART (Yun) 1.43 (1.18, 1.74) HAART (Mijch) 1.28 (1.04, 1.57) Statin (Hippisley-Cox) 0.85 (0.80, 0.91) Statin (Hippisley-Cox) 1.15 (0.80, 1.95) HAART (Himelhoch2004) 2.28 (1.24, 32.50) Statin (Kreyenbuhl) 0.29 (0.11, 0.77) Statin (Kreyenbuhl) 0.14 (0.05, 0.44) HAART (Himelhoch2007) 0.85 (0.71, 1.23) Statin (Weiss) 0.54 (0.36, 0.51) combined 0.72 (0.51, 1.00) combined 0.92 (0.85, 1.00) combined 0.79 (0.66, 0.95) 0.1 0.2 0.5 1 2 5 0.01 0.1 0.2 0.5 1 2 5 10 100 0.5 1 2 5 10 100 odds ratio (95% confidence interval) odds ratio (95% confidence interval) odds ratio (95% confidence interval) SMI Schz Affective
  8. 8. Detecting Depression in Primary & Secondary Care Evidence Based Update 2/3rds 1/3rd Primary Care 10% 25% cg42 cg90 Medical Psychiatry
  9. 9. Comment: Slide illustrates added proportion of all depression treated in each setting. Most depression is treated in primary care 1.20 1.00 1.00 0.80 0.64 0.60 0.40 0.26 0.20 0.10 0.00 All visits (N =14,372) Primary care (N =3,605) Psychiatrists (N =293) Medical specialists (N =10,474)
  10. 10. Clinical Questions Evidence Detecting depression Routinely PC vs SC; International Differences? Symptoms of Depression Too complex? Distress? Depression in medical settings Special? Somatic symptoms? Depression in late-life Different? Enhanced Detection Which tool? Do they work?
  11. 11. Recognition in Routine Care Is “diagnosis as usual” sufficient?
  12. 12. Audience Which method do you prefer? Your own skills (first assessment) Start with 1 or 2 questions Limit to 7 or 9 questions 20 questions Phone a friend!
  13. 13. Audience Which method do you prefer? Your own skills (first assessment) 50%‫‏‬ Start with 1 or 32% 2 questions 73% Limit to 7 or 75% 9 questions 80% 20 questions 85% Phone a friend!
  14. 14. Cancer Staff Psychiatrists Current Method (n=226)‫‏‬ Other/Uncertain 9% Other/Uncertain ICD10/DSMIV 2% 0% ICD10/DSMIV 13% Short QQ 3% 1,2 or 3 Sim ple QQ 15% Clinical Skills Use a QQ Alone 15% 55% Clinical Skills Alone 73% 1,2 or 3 Sim ple QQ 15% Comment: Slide illustrates preferences of cancer clinicians for detecting depression in a national survey
  15. 15. Cancer Staff Psychiatrists Other/Uncertain 9% Other/Uncertain ICD10/DSMIV 2% 0% ICD10/DSMIV 13% Short QQ 3% 1,2 or 3 Sim ple QQ 15% Clinical Skills Use a QQ Alone 15% 55% Clinical Skills Alone 73% 1,2 or 3 Sim ple QQ 15% Comment: Slide illustrates preferences of cancer clinicians vs psychiatrists for detecting Current Method depression
  16. 16. Methods to Evaluate Depression Unassisted Clinician Conventional Scales Untrained Trained Short (5-10)‫ ‏‬Long (10+)‫‏‬ Other/Uncertain Ultra-Short (<5)‫‏‬ 9% ICD10/DSMIV 0% Short QQ 3% Other/Uncertain Other/Uncertain 9% 9% ICD10/DSMIV ICD10/DSMIV 0% 0% Short QQ Short QQ 1,2 or 3 Simple 3% 3% QQ 15% Clinical Skills 1,2 or 3 Sim ple 1,2 or 3 Sim ple Alone QQ QQ 73% 15% 15% Clinical Skills Clinical Skills Alone Alone 73% 73% Verbal Questions Visual-Analogue Test PHQ2 Distress Thermometer WHO-5 Depression Thermometer Whooley/NICE
  17. 17. GP Detection of Depression – Meta-analysis Methods – 140 studies of GP recognition rate => – 90 depression – 40 interview – 19 se sp (+2) – 10 countries
  18. 18. Accuracy 2x2 Table Depression Depression PRESENT ABSENT Test +ve True +ve False +ve PPV Test -ve False -Ve True -Ve NPV Sensitivity Specificity Prevalence
  19. 19. N=35 studies Accuracy of GP’s Diagnoses Depression Depression PRESENT ABSENT GP +ve 2503 2515 5018 PPV 42.8% GP -ve 4050 25,125 6678 NPV 85.1% 6553 27,640 9559 Sensitivity Specificity Prevalence 19% 48% 80.1%
  20. 20. Unassisted Accuracy Cut-off value Non-Depressed Depressed # of Individuals True -ve True +ve False -ve False +ve Test Result
  21. 21. Unassisted Accuracy - Prospective Comment: Slide illustrates detection of depression (incl false + false –) for each 100 consecutive patients in primary care if prospective cases are recorded Cut-off value Non-Depressed n=80 Depressed # n=20 of Individuals True -ve True +ve 64 10 False -ve False +ve 10 16 Test Result
  22. 22. Unassisted Accuracy – Medical Notes Comment: Slide illustrates detection of depression (incl false + false –) for each 100 consecutive patients in primary care if GPs opinions are gathers from notes Cut-off value Non-Depressed n=80 Depressed # n=20 of Individuals True -ve True +ve 73 7 False -ve False +ve 13 7 Test Result
  23. 23. % Receiving Any treatment for Depression 20 17.9 18 n=84,850 face-to-face interviews 16 15.4 13.8 14 12 11.3 10.9 10.9 10 8.8 8.1 8 7.2 6.8 6 5.6 5.5 4.3 4 3.4 2 0 SA in n ly na ca m l e a y ne ce e nd e s m bi pa an m It a a nd ra u hi i an U ai la Sp fr co om co gi Ja m Is C kr rla A a Fr el In er In Ze ol U h B he G w ut h C ew et ig Lo So H N N Wang P et al (2007) Lancet 2007; 370: 841–50
  24. 24. Sl e ep di s turb an Los ces so ; in fa som ppe ni a De tite ; ea ; ov rly 0 10 20 30 40 50 60 70 80 90 pre ere wa 100 sse a tin ke n dm g; w ing ood e ig ; ho ht c pe han 86.8 Los Ap les so a th sne ges f in y; l ss; ter eth sad est arg ;w y; t ; gl oom ithd raw ired nes y al; s; l 55.6 54.4 Los in d ass so iffe i tud fe ren e ner ce; Los gy; lo n 43.3 so l os eli n f lib so ess ido f dr ; lo i ve 36 ss ; bu An of s rnt xio ex ou us; d ri v t ag e; i mp 29.8 itat ed; Te ote irri t ars nce So Fe abl ;w ma eli n e; r eep tic; est ing ve g gw les ; cr eta ort s, t yi n tive hl e ss; ens g sym gui e; s pt o l ty; t res ms lac sed ;m ko ala f se i se 26.2 25.6 25.2 Su ;m lf e i ci d ste Los ulti ple em so e th GP Asks about: f co ou con 23.8 nce ght sul ntr s; t ta t hou ion atio n; p ght s 24 oor of s Dim me el f ini s mo inj u hed ry, ry per poo f or r th ma i nk nce ing Em ; in Los otio abi 21.4 21.2 na lity so fa l la to cop Beh Los ffec t; f bil i ty; e avi so lat mo our fe a ff od al p njo ect sw rob ym ; lo ing lem ent ss s s; a or of e 13.9 12.8 ggr pl e mo ess asu tion ive re ; nes lac 9.5 Pe ko s; b fh ssi eh um mis avi or m; our ne al c 7.2 gat han Ps ive ges ych atti tud 7 Ap om es, pe oto wo ara r re rry nce tar ing ; sp dat 7 eec i on h; e ; sl xce He ow nes ssi ve ada che s sm 5.9 He s; d avy i lin izz g; v ine use a gu ss of a ene 4.8 l co ss, De hol etc l us , to . i on bac Re co 4.1 s; h act allu or ion ci n dru to p atio gs rob ns; 2.6 abl con Fa ec fus mil aus ion yo es or l 1.8 r pa ife st h looking for depression i sto eve ry n ts Ob of d 1.8 ses epr siv ess e id i on eat 1.3 i on ; ph ob ias Comment: Slide illustrates which Lac symptoms are asked about by GPS 0.9 Pe ko ri o f in do sig f lif ht e( 0.4 me no pau se ) 0.4
  25. 25. GP Recognizes: Proportion of Individual Symptoms Recognised by GPs 80.0 76.1 70.0 60.0 50.0 40.0 36.4 34.6 31.6 30.0 21.6 20.0 16.7 13.3 9.1 8.3 8.3 10.0 0.0 s ng d a gy s ia st ty ism es oo si ni ex re xie pi er ia m ln m m te Co or en dr An so fu in i An w ss on ar In t of Lo No of Pe Te ch ss ss po Lo Lo Hy O’Conner et al (2001) Depression in primary care. Int Psychogeriatr 13(3) 367-374.
  26. 26. Predictors of Recognition Prevalence 10% rural 15% mean 20% urban 20% (oncology 25%) Severity 70% mild 20% moderate 10% severe International Low in developing but in Western: Italy > Netherlands >Australia > UK > US Cumulative 77% single 89% 3-6 months
  27. 27. 1 Post-test Probability 0.9 Comment: Slide illustrates Bayesian curve – pre-test post test probability for every possible prevalence 0.8 0.7 0.6 0.5 PPV 0.4 0.3 Baseline Probability Depression+ 0.2 NPV Depression- 0.1 Pre-test Probability 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
  28. 28. 80 74 70 69.6 70 61.5 59.6 60 56.7 56.7 55.6 54.2 50 45.7 43.9 39.7 40 30 28.4 22.2 21 19.3 20 10 0 s L ris i n a n r z go an i na tle e iro ak en ha te TA ar ge n rli r lo Pa ai ad ia ro at es as ne h g k Be in TO ga M nt An an Se At Ve Ib ch g Ja n Sa n Na ro Sh an Ba de G M o Ri Recognition from WHO PPGHC Study (Ustun, Goldberg et al)
  29. 29. Symptoms of Depression…usual suspects Reminder of DSMIV and ICD
  30. 30. Which are Criteria for Depression? Loss of confidence Psychic anxiety Low motivation / drive Somatic anxiety Withdrawal Anger Avoidance Irritability Social isolation Lack of reactive mood Worry Cognitive Change Feelings of dread Memory complaints Helplessness Perceptual distortion Hopelessness => None are official criteria!
  31. 31. Core Symptoms ICD10 DSMIV Persistent sadness or low mood Yes (core)‫‏‬ Yes (core)‫‏‬ Loss of interests or pleasure Yes (core)‫‏‬ Yes (core)‫‏‬ Fatigue or low energy Yes (core)‫‏‬ Yes Disturbed sleep Yes Yes Poor concentration or Yes Yes indecisiveness Low self-confidence Yes No Poor or increased appetite Yes No Suicidal thoughts or acts Yes Yes Agitation or slowing of Yes Yes movements Guilt or self-blame Yes Yes Significant change in weight No Yes
  32. 32. Symptom Significance in Depression Depression ICD10 DSMIV HADs D Score Severity Healthy 0 or 1 0 symptom 0-3 symptom Sub-syndromal 2 or 3 1 or No core 4-7 symptoms symptoms Mild 4 symptoms 2-4 symptoms 8 -11 (2+2)‫‏‬ (minor)‫‏‬ Moderate (5 or )6 5 symptoms 12 - 15 symptoms (Mj)‫‏‬ Severe (7 or) 8 Unspecified 16 - 21 symptoms (3+4)‫‏‬ => HADS
  33. 33. Graphical – single discriminating symptom Comment: Slide illustrates the concept of discrimination using one symptom severity of “low mood” Non-Depressed Depressed # of Individuals With symptom Point of Rarity Severity of Low Mood
  34. 34. Graphical – single symptom Non-Depressed Depressed # ?Point of Rarity of Individuals With symptom Severity of Low Mood
  35. 35. Pooled Comment: Slide illustrates added hypothetical distribution of mood scores in a population with hidden depression Non-Depressed Depressed # of Individuals With symptom Severity of Low Mood
  36. 36. Comment: Slide illustrates added actual distribution of mood scores on the HADS in a cancer population with hidden depression from the Edinburgh cancer centre
  37. 37. 0 1000 1500 2000 2500 3000 500 Ze r o O ne Tw o Th re e Fo ur Fi ve Si x Se ve n ei gh t N in e Te n El ev en Tw el ve Th irt ee Fo n ur te en Fi ft e en Si xt ee Se n ve nt ee Ei n gh te en
  38. 38. 0.05 0.15 0.25 0 0.1 0.2 0.3 Ei gh t N in e Te n El ev en Tw el ve Th irt ee n Fo ur te en Fi fte en Si xt ee n Se ve nt Proportion Missed ee n Proportion Recognized Ei gh te en N in et ee n Tw en Tw ty en ty -o ne
  39. 39. Symptoms of Depression…time for change Are the classical symptoms evidence based?
  40. 40. “Common” Symptoms of Depression Item Depressed Frq Non-Depressed Frq Depressed mood 0.93 0.18 Diminished drive 0.88 0.30 Loss of energy 0.87 0.32 Concentration/indecision 0.87 0.27 Sleep disturbance 0.83 0.32 Diminished concentration 0.82 0.24 Diminished interest/pleasure 0.81 0.12 Insomnia 0.70 0.27 Anxiety 0.69 0.42 Worthlessness 0.61 0.12 Psychic anxiety 0.59 0.33 Thoughts of death 0.56 0.12 Mitchell, Zimmerman et al n=2300
  41. 41. “Uncommon” Symptoms Non-Depressed Item Depressed Proportion Proportion Somatic anxiety 0.46 0.25 Decreased appetite 0.45 0.11 Anger 0.44 0.26 Psychomotor agitation 0.34 0.09 Psychomotor retardation 0.28 0.04 Decreased weight 0.23 0.06 Lack of reactive mood 0.22 0.06 Increased appetite 0.19 0.07 Hypersomnia 0.19 0.06 Increased weight 0.16 0.06 Mitchell, Zimmerman et al MIDAS Database. Psychol Med 2009
  42. 42. -0.10 0.00 0.10 0.20 0.30 0.40 0.50 A nge r A nxie ty Decr ea s e d app eti te Decr eas e d weig ht Depr es sed m ood Dimin is hed c onc entr a t io n identifying non-depressed Dimin is hed dr ive Dimin is hed int er est /p leasu re Exc e ss ive guilt Help less n Comment: Slide illustrates added value of each ess symptom when diagnosing depression and when Hope le s snes s Hy pe rsom ni a Inc re a sed a ppet ite Inc re a sed w eight Indec isiv enes s Ins om nia L ac k of re act iv e mo od L os s of en erg y Ps ych i c a nx iety Ps ych o mot o r agi ta tion Ps ych o mot o r c han ge Ps ych o mot o r ret ar da tion Sl eep dis tu rban ce Soma ti c a nx iet y Rule-In Added Value (PPV-Prev) Thou g hts Rule-Out Added Value (NPV-Prev) of de ath Wor t hles s ness
  43. 43. 1 Depressed Mood S Diminished interest/pleasure e 0.9 Diminished drive n s Loss of energy i Sleep disturbance 0.8 t Diminished concentration i 0.7 v i t 0.6 y 0.5 0.4 0.3 Comment: Slide illustrates summary ROC curve sensitivity/1-specficity plot for each mood symptom 0.2 0.1 1 - Specificity 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 n=1523
  44. 44. Depression in Medical Settings Are the symptoms (phenomenology) unique? Is it harder to detect?
  45. 45. Approaches to Somatic Symptoms of Depression Inclusive Uses all of the symptoms of depression, regardless of whether they may or may not be secondary to a physical illness. This approach is used in the Schedule for Affective Disorders and Schizophrenia (SADS) and the Research Diagnostic Criteria. Exclusive Eliminates somatic symptoms but without substitution. There is concern that this might lower sensitivity. with an increased likelihood of missed cases (false negatives)‫‏‬ Etiologic Assesses the origin of each symptom and only counts a symptom of depression if it is clearly not the result of the physical illness. This is proposed by the Structured Clinical Interview for DSM and Diagnostic Interview Schedule (DIS), as well as the DSM-III-R/IV). Substitutive Assumes somatic symptoms are a contaminant and replaces these additional cognitive symptoms. However it is not clear what specific symptoms should be substituted
  46. 46. Somatic Bias in Mood Scales
  47. 47. Comment: Slide illustrates concept of phenomenology of depressions in medical disease Primary Depression Medically Unwell Secondary Depression
  48. 48. Study: Coyne Thombs Mitchell N= 1200 – 4500 Pooled database study All comparative studies
  49. 49. A gi ta tio n (C A om 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 gi or ta bi tio d) n A (P nx rim ie ty ar (C y) om * A or nx bi ie d) A ty pp (P et rim it e ar (C y) om A * C pp or n=4069 vs 4982 on et bi ce it e d) nt (P ra ri tio m C n ar on (C y) ce om nt or ra bi tio n d) Fa (P t ig rim ue ar y) (C om Fa or t ig bi ue d) (P G ri ui m lt ar (C y) om * H or op el G bi es ui d) lt sn (P es ri H s m op (C ar el om y) es * sn or bi es d) In s so (P ri m m ni ar a y) (C In om * so or Lo m bi ss ni d) In a te (P ri re st m Lo ar (C y) ss om In * te or re bi st d) Lo w (P M rim oo ar d y) (C Lo om w * M or R oo bi d) et d ar da (P rim t io n ar (C y) R et om ar or da bi t io d) n Su (P ic ri id m primary depression e ar y) (C om * Su or W ic bi ei id d) gh e tL (P ri os m s ar W (C y) ei om gh symptoms profile in comorbid vs tL or Comment: Slide illustrates similar os bi Co-morbid Depression vs Primary Depression d) s (P rim ar y) Prim ary Depression Com orbid Depression *

×