Your SlideShare is downloading. ×
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Prof Plimer Adelaide Climate Change
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Prof Plimer Adelaide Climate Change

939

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
939
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
17
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. th London, 30th November 2009 Carbon dioxide: Hero or villain Ian Plimer Professor of Geology, University of AdelaideEmeritus Professor of Earth Sciences, University of Melbourne
  • 2. Constant cyclical climate change Known Cycles variable tectonic 143 million year galactic 100,000 years orbital 41,000 years orbital 23,000 years orbital 1,500 years solar 210 years solar 87 years solar 22 years solar 18.7 years lunar 11 years solar
  • 3. The next climate change: The future is written in the past Pleistocene ice age 110,000 to 14,700 years ago Bölling 14,700 to 13,900 years ago Older Dryas 13,900 to 13,600 years ago Allerød 13,600 to 12,900 years ago Younger Dryas 12,900 to 11,600 years ago Holocene warming 11,600 to 8,500 years ago Egyptian cooling 8,500 to 8,000 years ago Holocene Warming 8,000 to 5,600 years ago Akkadian cooling 5,600 to 3,500 years ago Minoan Warming 3,500 to 3,200 years ago Bronze Age Cooling 3,200 to 2,500 years ago Roman Warming 500 BC to 535 AD Dark Ages 535 AD to 900 AD Medieval Warming 900 AD to 1300 AD Little Ice Age 1300 AD to 1850 AD Modern Warming 1850 AD to ….
  • 4. Climate change over time
  • 5. Is the speed and degree of modern climate change unprecedented? 6 4Temperature (°C) 2 0 Today -2 -4 -6 -8 -10 -12 400 300 200 100 0 Time – Thousands of Years Before Present
  • 6. Cooling with increasing CO2
  • 7. TemperatureLocation, location, location…..
  • 8. Urban heat island effect 23.5Temperature (°F) Tucson U of Arizona (32.2N, 111.0W) Annual Mean 22.0 20.0 18.5 1880 1900 1920 1940 1960 1980 2000 2020
  • 9. What is really measured? 0.8Temperature Trend per Decade 0.7 0.6 1940 - 1996 (°C) 0.5 0.4 0.3 0.2 0.1 0 -0.1 10,000 100,000 1,000,000 10,000,000 Population of Country
  • 10. Reliability of surface measurements The 28 years of high quality satellite dataTemperature Variation (°C) 1.0 Global 0.5 0 -0.5 1.0 Northern Hemisphere 0.5 0 -0.5 1.0 Southern Hemisphere 0.5 0 -0.5 1980 1985 1990 1995 2000 2005 The Southern Hemisphere is the same temperature it was 28 years ago, The Northern Hemisphere has warmed slightly
  • 11. Models for atmospheric temperature 10 10 10 10 NASA/NSIPP GFDL 50 50 50 50 100 100 100 100 200 200 200 200 300 300 300 300 500 500 500 500 700 700 700 700 950 950 950 950 60°S 60°S 30°S 30°S EQ EQ 30°N 30°N 60°N 60°N 60°S 60°S 30°S 30°S EQ EQ 30°N 30°N 60°N 60°N -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 10 10 10 10 SNU NASA/GEOS5 50 50 50 50 100 100 100 100 200 200 200 200 300 300 300 300 500 500 500 500 700 700 700 700 950 950 950 950 60°S 60°S 30°S 30°S EQ EQ 30°N 30°N 60°N 60°N 60°S 60°S 30°S 30°S EQ EQ 30°N 30°N 60°N 60°NZonally-averaged distributions of predicted temperature change in °K at CO2 doubling (2xCO2 -control), 2 2 as a function of latitude and pressure level, for four general-circulation models (Lee et al., 2007)
  • 12. Radiosonde measurements No “greenhouse warming” signature is observed in reality hPa Km 25 24 50 20 100 16 200 12 300 8 500 700 4 1000 75°N 45°N 30°N 15°N EQ 15°S 30°S 45°S 75°SSource: HadAT2 radiosonde observations, from CCSP (2006), p116, fig. 5.7E
  • 13. Sea level change 1992-95 1992-98 Global average rise Global average rise = 4.6 mm/yr = 1-4-3.1 mm/yr -60 -30 0 30 60 mm/yrTOPEX/Poseidon measurements, September 1992 – August 1995(patterns dominated by international ocean variability, e.g. ENSO)
  • 14. We’ll all be rooned Measurement of historic sea levels 2000 Port Pirie -0.3mm/yrSea Level (mm) 1500 2.4mm/yr Port Adelaide Outer Harbour Fort Denison 1.0mm/yr 1000 1.4mm/yr 500 Fremantle Southern Oscillation Index 0 1880 1900 1920 1940 1960 1980 2000Global average of tide gauges for 20th Century sea level rise is 1-2mm/yr (IPCC, 2001)
  • 15. Smoothing of ice core CO2 data 2 - why pre-industrial choice of 280ppm? 1812-2004 Northern Hemisphere, Chemical Measurement from 1958 Mauna Loa CO2 5 year average 2 Ice core Antarctica 450 400CO2 (ppmv) 350 300 270 1810 1850 1900 1950 1970 Year
  • 16. Water: Main greenhouse gas & driver of CO2100% 0.001% Man made Natural80%60%40%20% 0.117% 0.066% 0.047% 0.047% 0% Water CO 2 Methane N 2O Misc Vapour Gases
  • 17. Doubling CO2 at 385ppm has no effect The warming effect of atmospheric carbon dioxide 1.6 1.4Temperature (°C) 1.2 1.0 0.8 0.6 0.4 0.2 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 Atmospheric carbon dioxide in ppm
  • 18. Submarine volcanicity Terrestrial volcanoes change weather45°30’N (e.g. Tambora 1815) Submarine supervolcanoes add heat Megaplume 2 and CO 2 to oceans and change climate (64,000km ridges 10,000 km3/a of cooling water Recent >85% Earth’s volcanoes) Recent45°00’N Eruptions Eruptions Megaplume 144°30’N 130°30’W 130°00’W Seafloor Spreading
  • 19. Greenland ice sheet 5.4cm/yr 5.4cm/yr increase* increase*Greenland ice sheet change in cm/yr d180 Site15 GISP2, Boltzman Strobel 1994 10per. Mov. Avg (d180 Site15 GISP2, Boltzman Strobel 1994) (d180 Site15 GISP2, Boltzman Strobel 1994) 80°N -30° -32° -34° -36° 75°N -38° 20°W -40° -42° 80°W 1940 1945 1950 1955 1960 1965 1960 1975 1980 1985 Year 70°N 30°W -29.5 -30 65°N -30.5 -31 -31.5 -3260°N 40°W -32.5 70°W 60°W 50°W 1000 800 600 400 200 100 Time – Years Before Present 30 20 15 10 5 0 -5 -10 -15 -20 -30*Derived 1992-2003*Derived from 11 years of ERS-1/ERS-2 satellite altimeter data, 1992-2003
  • 20. Is global warming melting the ice caps and reducing sea ice? NO!1.0 Antarctic Sea Ice Trends0.5 …. going up! 0-0.5 0° 30°W 30°E-1.0 60°W Antarctic 60°E Source: National Snow and Ice data Centre Source: National Snow and Ice data Centre Peninsula-1.5 1978 1990 2000 2006 YearAntarctic Land Ice Trends 90°W…. going up over most Amundsen Sea of the continent! 120°W 120°E Kamb Ice Stream 150°WSource: Vaughn, D.G., 2005. Science, 3008, 1877-1878. 2000 Km 180° 150°E
  • 21. Temperature proxyH2O(vap) buffer to maximum and minimum temperature 4 Temperature (°C) 2 0 -2 -4 -6 280 CO2 (ppmv) CO2 (ppmv) -8 260 240 220 1.5 200 Dust (ppm) 1.0 0.5 0 0 50 100 150 200 250 300 350 400 Thousands of Years Ago
  • 22. Temperature, sunspots and CO2 0.3 Temperature Anomaly (°C) CO2 Concentration (ppm v) Temperature Anomaly (°C) 350 0.2Sunspot Cycle Length (y) 10.0 340 0.1 10.5 330 0 Sunspot cycle length Temperature anomaly 320 -0.1 11.0 310 -0.2 CO2 concentration 300 -0.3 11.5 290 -0.4 12.0 -0.5 1860 1880 1900 1920 1940 1960 1980 2000 Year
  • 23. Temperature proxy Cosmogenic isotopes (C 14; also Be 10, Al 26, Cl 36, Ca 41, Ti 44, I 129) 100 80 60 40 20 0 10,000BC 8,000BC 6,000BC 4,000BC 2,000BC 1AD 2000AD -30 ModernTemperature (°C) Medieval Maximum Maximum -20 Dalton Minimum -10 Maunder Spörer Minimum Minimum Oort 0 Minimum Wolf 10 Minimum 20 0 100 200 300 400 500 600 700 800 900 1000 1100 Calendar Years Before Present
  • 24. It’s easy to stop climate change - All we have to do is:STOP bacteria doing what bacteria doSTOP ocean currents changingSTOP plate tectonics and continent movementSTOP orbital changes to EarthSTOP variations in energy released from SunSTOP orbit of Solar System in GalaxySTOP supernoval eruptionsWhen we’ve stopped these natural processes,When we’ve stopped these natural processes, if human-induced then: if human-induced then: PERSUADE China and India to stay poor PERSUADE China and India to stay poor
  • 25. A few little problemsWarmings in industrial age (1860-1880, 1910-1940, 1975-1998; CO2 rise only correlates with 1975-1998 warming)Industrial age coolings when CO2 increasing (1880-1910, 1940-1975, 1998-presentPeak of Little Ice Age coolings (Dalton, Maunder, Spörer, Wolf) when few sunspots; 20th Century solar maximum and no sunspotsPre-industrial Minoan, Roman and Medieval Warmings (with no sea level changes); SL rise of 130m 12,000-6,000 years ago, SL fall of 2m over last 6,000 yearsGreater past variability and changesFive of six great ice ages when atmospheric CO2 up to 1000 times higher than nowArctic warming (fanfare); Antarctic, oceanic (PDO) and atmospheric cooling (silence)SOLUTIONFraud

×