Aiaa Student Design Build Fly Electric Airplane

3,205 views
2,984 views

Published on

Aiaa Student Design Build Fly Electric Airplane

Published in: Education, Technology, Business
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,205
On SlideShare
0
From Embeds
0
Number of Embeds
11
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide
  • Aiaa Student Design Build Fly Electric Airplane

    1. 1. P oseidon’s F ury Kristina Morace * Jonathan Moore * Ryan Holmes University of Central Florida AIAA Student Design Build Fly Electric Airplane
    2. 2. Outline 1. Required and Desired Features 2. General Design Overview 3. Drain and Structural Analysis 4. Aerodynamics and Flight Performance 5. Propulsion System 6. Summary
    3. 3. Aircraft Features <ul><li>Required </li></ul><ul><li>R/C Electric powered </li></ul><ul><li>5 lbs max NiCad batteries </li></ul><ul><li>4 liters max payload </li></ul><ul><li>0.5&quot; max drain orifice </li></ul><ul><li>Complete 2 missions </li></ul><ul><li>Pass wing tip tests </li></ul><ul><li>4' x 2' x 1' box </li></ul><ul><li>Desired </li></ul><ul><li>Carry 4 liters </li></ul><ul><li>Drain Time ~ 30 sec </li></ul><ul><li>Lift capacity ~ 25 lb </li></ul><ul><li>Flight Stability </li></ul><ul><li>Battery weight ~ 3 lb </li></ul><ul><li>High pitch speed </li></ul><ul><li>Low RAC </li></ul>
    4. 4. Rated Aircraft Cost RAC = (300*MEW + 1500*REP + 20*MFHR)/1000 where: MEW = Empty Weight REP = Battery Weight MFHR = Component Summation Total Score = Written Report * Flight Score RAC
    5. 5. - Wing span = 9.5 ft - Length = 5 ft - Height = 28 in Aircraft Overview
    6. 6. Drain System - Custom 4 liter tank - Custom ball valve
    7. 7. Main Fuselage - 7 Bulkheads - Inner-wing - 5th bulkhead 5th Bulkhead Inner-wing
    8. 8. Landing Gear - Tricycle Configuration - Carbon Fiber - Detachable
    9. 9. Twin Booms - Carbon Fiber - Detachable
    10. 10. Wing Sections - Secure booms - Bolt to inner wing - Detachable
    11. 11. Inverted V-tail - Pins into booms - Detachable
    12. 12. Powerplant - Motor - Batteries - Spinner - Propeller
    13. 13. Aft Cone - Twists on/off - Access to electronics
    14. 15. Drain System
    15. 16. Valve Design <ul><li>Good seal </li></ul><ul><li>Actuate in flight </li></ul><ul><li>True ½ inch orifice </li></ul><ul><li>Manufactured using stereolithography </li></ul><ul><li>Drain Coefficient </li></ul><ul><ul><li>Between 0.6 - 1.0 </li></ul></ul><ul><ul><li>Actual ~ 0.8 </li></ul></ul><ul><ul><li>Drain time = 55 sec </li></ul></ul>
    16. 17. <ul><li>Holds 4 liters </li></ul><ul><li>Baffles </li></ul><ul><li>Modified Geometry </li></ul><ul><li>Predicted drain time </li></ul><ul><li>~ 32 seconds </li></ul><ul><li>Actual Drain time </li></ul><ul><li>~ 30 seconds </li></ul><ul><li>45% reduction! </li></ul>Tank Design
    17. 18. Wing Spar 5th Bulkhead
    18. 19. <ul><li>Laminate ply </li></ul><ul><li>2 layers of carbon fiber </li></ul><ul><li>4 attach points </li></ul><ul><li>Built to support full load ~ 20 lbs </li></ul>Wing Spar
    19. 20. <ul><li>Wing Tip Test </li></ul><ul><li>Symmetric </li></ul><ul><li>10 lb load at tip </li></ul><ul><li>Max stress = 27.9 ksi </li></ul>Spar Analysis Max Stress = 27.9 ksi
    20. 21. Landing Gear Analysis <ul><li>Aluminum Gear (661-T6) </li></ul><ul><ul><ul><li>3g load </li></ul></ul></ul><ul><ul><ul><li>Max Von Mises 20.6 ksi </li></ul></ul></ul><ul><ul><ul><li>FOS = 1.9 </li></ul></ul></ul><ul><ul><ul><li>Weighs 0.75 lbs </li></ul></ul></ul><ul><li>Carbon Fiber Gear </li></ul><ul><ul><ul><li>3g load </li></ul></ul></ul><ul><ul><ul><li>Max Tensile Stress 22.2 ksi </li></ul></ul></ul><ul><ul><ul><li>FOS = 2.0 </li></ul></ul></ul><ul><ul><ul><li>Weighs 0.43 lbs </li></ul></ul></ul>
    21. 22. Aerodynamics and Flight Performance
    22. 23. Aerodynamics – Goals <ul><li>Low Reynolds Number (10 5 ) </li></ul><ul><li>Lift Coefficient > 1.2 </li></ul><ul><li>Lift to Drag Ratio > 5 </li></ul><ul><li>Low Camber </li></ul><ul><li>Low RAC </li></ul>
    23. 24. Aerodynamics –Test Verification Predicted Test
    24. 25. Aerodynamics – Airfoil <ul><ul><li>Exceeds Needs </li></ul></ul><ul><ul><ul><li>C L,max = 1.4 </li></ul></ul></ul><ul><ul><ul><li>( L / D ) max = 22 </li></ul></ul></ul><ul><ul><li>Problem </li></ul></ul><ul><ul><ul><li>Thickness to Chord Ratio Too Small </li></ul></ul></ul><ul><ul><ul><ul><li>Design: 10.4% </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Need: 12.5% </li></ul></ul></ul></ul><ul><li>Eppler 216 </li></ul>
    25. 26. Aerodynamics – Airfoil <ul><li>Eppler 216 Modified </li></ul>Modified E216
    26. 27. Aerodynamics – Airfoil <ul><li>Eppler 216 Modified </li></ul>
    27. 28. Aerodynamics – Wing 9.5 ’ 10.5 ” AC = 25% of Chord CG = 25% of Chord
    28. 29. Aerodynamics – Empennage <ul><li>Inverted “V” Configuration </li></ul><ul><ul><li>Pro-verse Yaw Characteristics </li></ul></ul><ul><ul><li>Aircraft Score Rewards </li></ul></ul>Actual Path Ideal Turn
    29. 30. Aerodynamics – Empennage <ul><li>Twin Boom Configuration </li></ul><ul><ul><li>No Ground Strike </li></ul></ul><ul><ul><li>Robust and Modular </li></ul></ul><ul><li>Inverted “V” Configuration </li></ul><ul><ul><li>Pro-verse Yaw Characteristics </li></ul></ul><ul><ul><li>Aircraft Score Rewards </li></ul></ul>
    30. 31. Aerodynamics – Empennage 28” 7.5” Angle Between Panels = 110 deg.
    31. 32. Flight Performance The Difference: Longitudinal Stability
    32. 33. Performance – Phugoid Stability Period = 14 minutes Flight Characteristics = Level 2
    33. 34. Performance – Short Period Stability Period = 21.5 s Flight Characteristics = Level 1
    34. 35. Performance – Stability <ul><ul><li>1 st Flight resulted in a “5” </li></ul></ul><ul><ul><ul><li>Poor Roll control from Adverse Yaw </li></ul></ul></ul><ul><ul><ul><ul><li>Aileron Differential Added </li></ul></ul></ul></ul><ul><ul><ul><li>Poor Ground Handling </li></ul></ul></ul><ul><ul><ul><ul><li>Corrected Steering Control </li></ul></ul></ul></ul><ul><li>Pilot Rating (Cooper-Harper Scale) </li></ul><ul><ul><li>Remaining Flights are a “1” </li></ul></ul>
    35. 36. Performance – Flight Testing
    36. 37. Performance – Flight Testing
    37. 38. Performance – Flight Testing
    38. 39. Propulsion System
    39. 40. <ul><li>Nomenclature </li></ul><ul><li>System Requirements </li></ul><ul><li>Predicting Outputs </li></ul><ul><li>Testing </li></ul><ul><li>System Integration </li></ul><ul><li>Safety Features </li></ul>Propulsion System
    40. 41. <ul><li>Energy Density </li></ul>Nomenclature <ul><ul><li>Sanyo 1700 mA-hr </li></ul></ul><ul><ul><ul><li>“ A” size Ni-Cad battery </li></ul></ul></ul><ul><ul><li>Sanyo 2400 mA-hr </li></ul></ul><ul><ul><ul><li>“ C” size Ni-Cad battery </li></ul></ul></ul><ul><li>Rated Aircraft Cost (RAC) </li></ul><ul><ul><li>Rated Engine Power (REP) </li></ul></ul><ul><ul><li>Manufacturer's Empty Weight (MEW) </li></ul></ul>3 lb 36 cells 5 lb 32 cells
    41. 42. <ul><li>Take-Off </li></ul><ul><ul><li>Thrust > 4 lbf </li></ul></ul><ul><ul><li>Speed > 30 mph </li></ul></ul><ul><ul><li>Distance < 150 ft </li></ul></ul><ul><li>Steady Level Flight </li></ul><ul><ul><li>Thrust > 1 lbf </li></ul></ul><ul><li>Minimize RAC </li></ul>System Requirements
    42. 43. <ul><li>ThrustHP Calculator Software </li></ul><ul><li>Inputs </li></ul><ul><ul><li>Propeller </li></ul></ul><ul><ul><ul><li>Diameter </li></ul></ul></ul><ul><ul><ul><li>Pitch </li></ul></ul></ul><ul><ul><ul><li>RPM </li></ul></ul></ul><ul><li>Outputs </li></ul><ul><ul><li>Pitch Speed </li></ul></ul><ul><ul><li>Static Thrust </li></ul></ul>Predicting Outputs Diameter Pitch RPM Pitch Speed Static Thrust
    43. 44. Testing Schematic Multimeter (Voltage) Multimeter (Current) External Power Source Radio Transmitter Spring Scale Current Divider Speed Controller Stroboscope Battery Pack Cobalt 60 Motor (Geared)
    44. 45. Testing Thrust Sled Spring Scale Drawer Glides Motor Mount
    45. 46. Test Results Minimum Thrust 32 “C” batteries 36 “A” batteries
    46. 47. Test Results 32 “C” batteries Minimum Pitch Speed 36 “A” batteries
    47. 48. <ul><li>33% reduction in MEW and REP </li></ul><ul><li>First 3 minutes </li></ul><ul><ul><li>6 lbf Static Thrust </li></ul></ul><ul><ul><li>47 mph Pitch Speed </li></ul></ul>Propulsion Results Summary Meets Design Requirements
    48. 49. Propulsion Integration
    49. 50. <ul><li>Kill Switches </li></ul><ul><li>40 Amp Fuse </li></ul><ul><li>PCM Receiver </li></ul><ul><li>Air Scoops </li></ul>Propulsion Safety Features Forward Scoops Nose Compartment Air Flow Motor Battery Pack Bulkheads Aft
    50. 51. <ul><li>Satisfies all competition requirements </li></ul><ul><ul><li>carries 3 lbs of batteries </li></ul></ul><ul><ul><li>passes loaded wing tip test </li></ul></ul><ul><ul><li>takes off in 132 ft </li></ul></ul><ul><ul><li>easily fits into box </li></ul></ul><ul><li>Contains all desired features </li></ul><ul><ul><li>carries 4 liter payload </li></ul></ul><ul><ul><li>drains in 30 seconds </li></ul></ul><ul><ul><li>minimized RAC </li></ul></ul><ul><li>Successfully completes loaded and unloaded missions </li></ul>Summary
    51. 52. <ul><li>Team Members </li></ul><ul><ul><li>Michael Denton </li></ul></ul><ul><ul><li>Craig Daniels </li></ul></ul><ul><ul><li>Underclassmen </li></ul></ul><ul><li>Advisor </li></ul><ul><ul><li>Dr. Eric Petersen </li></ul></ul>Acknowledgements
    52. 53. Questions?

    ×