Wiranti punya

337 views

Published on

latihan

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
337
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Wiranti punya

  1. 1. Partial Corr Notes Output Created 05-May-2011 13:13:46 CommentsInput Data C:UsersuserDesktoptugas spss kelompok 6.sav Active Dataset DataSet1 Filter <none> Weight <none> Split File <none> N of Rows in Working Data 60 FileMissing Value Handling Definition of Missing User defined missing values are treated as missing. Cases Used Statistics are based on cases with no missing data for any variable listed. Syntax PARTIAL CORR /VARIABLES=Usia Merokok BY Berlari Berat /SIGNIFICANCE=TWOTAIL /MISSING=LISTWISE.Resources Processor Time 0:00:00.000 Elapsed Time 0:00:00.000 CorrelationsControl Variables Usia MerokokKemampuan Berlari & Berat Usia Correlation 1.000 -.019Badan Significance (2-tailed) . .885 df 0 56 Merokok Correlation -.019 1.000 Significance (2-tailed) .885 .
  2. 2. df 56 0Partial Corr Notes Output Created 05-May-2011 13:14:47 CommentsInput Data C:UsersuserDesktoptugas spss kelompok 6.sav Active Dataset DataSet1 Filter <none> Weight <none> Split File <none> N of Rows in Working Data 60 FileMissing Value Handling Definition of Missing User defined missing values are treated as missing. Cases Used Statistics are based on cases with no missing data for any variable listed. Syntax PARTIAL CORR /VARIABLES=Usia Merokok Berat Kelamin BY Berlari /SIGNIFICANCE=TWOTAIL /MISSING=LISTWISE.Resources Processor Time 0:00:00.016 Elapsed Time 0:00:00.016 Correlations Berat JenisControl Variables Usia Merokok Badan KelaminKemampuan Berlari Usia Correlation 1.000 .025 .166 -.242 Significance . .849 .210 .065 (2-tailed) df 0 57 57 57
  3. 3. Merokok Correlation .025 1.000 .264 .019 Significance .849 . .043 .887 (2-tailed) df 57 0 57 57 Berat Badan Correlation .166 .264 1.000 -.480 Significance .210 .043 . .000 (2-tailed) df 57 57 0 57 Jenis Kelamin Correlation -.242 .019 -.480 1.000 Significance .065 .887 .000 . (2-tailed) df 57 57 57 0Partial Corr Correlations Kemampuan JenisControl Variables Berlari KelaminMerokok & Berat Badan & Kemampuan Correlation 1.000 -.541Usia Berlari Significance (2-tailed) . .000 df 0 55 Jenis Kelamin Correlation -.541 1.000 Significance (2-tailed) .000 . df 55 0 Notes Output Created 05-May-2011 13:20:05 CommentsInput Data C:UsersuserDesktoptugas spss kelompok 6.sav Active Dataset DataSet1 Filter <none>
  4. 4. Weight <none> Split File <none> N of Rows in Working Data 60 FileMissing Value Handling Definition of Missing User defined missing values are treated as missing. Cases Used Statistics are based on cases with no missing data for any variable listed. Syntax PARTIAL CORR /VARIABLES=Usia Kelamin BY Berlari Merokok Berat /SIGNIFICANCE=TWOTAIL /MISSING=LISTWISE.Resources Processor Time 0:00:00.000 Elapsed Time 0:00:00.016 Notes Output Created 05-May-2011 13:21:17 CommentsInput Data C:UsersuserDesktoptugas spss kelompok 6.sav Active Dataset DataSet1 Filter <none> Weight <none> Split File <none> N of Rows in Working Data 60 FileMissing Value Handling Definition of Missing User defined missing values are treated as missing. Cases Used Statistics are based on cases with no missing data for any variable listed. Syntax PARTIAL CORR /VARIABLES=Berlari Kelamin BY Merokok Berat Usia /SIGNIFICANCE=TWOTAIL /MISSING=LISTWISE.
  5. 5. Resources Processor Time 0:00:00.000 Elapsed Time 0:00:00.000Regression Notes Output Created 05-May-2011 13:26:47 CommentsInput Data C:UsersuserDesktoptugas spss kelompok 6.sav Active Dataset DataSet1 Filter <none> Weight <none> Split File <none> N of Rows in Working Data 60 FileMissing Value Handling Definition of Missing User-defined missing values are treated as missing. Cases Used Statistics are based on cases with no missing values for any variable used. Syntax REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT Berlari /METHOD=ENTER Kelamin Merokok Berat Usia /SCATTERPLOT=(*SDRESID ,*ZPRED) (*ZPRED ,Berlari) /RESIDUALS NORM(ZRESID).Resources Processor Time 0:00:00.920 Elapsed Time 0:00:01.185 Memory Required 2308 bytes
  6. 6. Additional Memory Required 800 bytes for Residual Plots Variables Entered/RemovedModel Variables Entered Variables Removed Method1 Usia, Merokok, Jenis Kelamin, Berat Badana . Entera. All requested variables entered. Model SummarybModel R R Square Adjusted R Square Std. Error of the Estimate1 .827a .684 .661 11.876a. Predictors: (Constant), Usia, Merokok, Jenis Kelamin, Berat Badanb. Dependent Variable: Kemampuan Berlari ANOVAbModel Sum of Squares df Mean Square F Sig.1 Regression 16784.329 4 4196.082 29.754 .000a Residual 7756.521 55 141.028 Total 24540.850 59a. Predictors: (Constant), Usia, Merokok, Jenis Kelamin, Berat Badanb. Dependent Variable: Kemampuan Berlari Coefficientsa StandardizedModel Unstandardized Coefficients Coefficients B Std. Error Beta t Sig.1 (Constant) 118.963 8.664 13.731 .000 Jenis Kelamin -14.894 3.122 -.368 -4.771 .000 Merokok 6.606 3.113 .163 2.122 .038 Berat Badan -.595 .081 -.649 -7.310 .000 Usia -.479 .159 -.262 -3.021 .004
  7. 7. a. Dependent Variable: Kemampuan Berlari Residuals Statisticsa Minimum Maximum Mean Std. Deviation NPredicted Value 15.85 82.64 52.55 16.867 60Std. Predicted Value -2.176 1.784 .000 1.000 60Standard Error of Predicted 2.656 6.199 3.368 .647 60ValueAdjusted Predicted Value 13.01 84.01 52.59 16.921 60Residual -30.532 22.150 .000 11.466 60Std. Residual -2.571 1.865 .000 .966 60Stud. Residual -2.656 1.981 -.002 1.012 60Deleted Residual -32.588 24.990 -.036 12.622 60Stud. Deleted Residual -2.819 2.037 -.004 1.029 60Mahal. Distance 1.968 15.095 3.933 2.187 60Cooks Distance .000 .191 .021 .034 60Centered Leverage Value .033 .256 .067 .037 60a. Dependent Variable: Kemampuan BerlariCharts

×