• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System
 

HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System

on

  • 228 views

Presented by Jawoo Koo, IFPRI at the Africa RISING–CSISA Joint Monitoring and Evaluation Meeting, Addis Ababa, Ethiopia, 11-13 November 2013

Presented by Jawoo Koo, IFPRI at the Africa RISING–CSISA Joint Monitoring and Evaluation Meeting, Addis Ababa, Ethiopia, 11-13 November 2013

Statistics

Views

Total Views
228
Views on SlideShare
226
Embed Views
2

Actions

Likes
0
Downloads
10
Comments
0

1 Embed 2

http://unjobs.org 2

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

CC Attribution-NonCommercial-ShareAlike LicenseCC Attribution-NonCommercial-ShareAlike LicenseCC Attribution-NonCommercial-ShareAlike License

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment
  • Reliable characterization of the baseline systemReasonable estimation of the responses of the system

HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System Presentation Transcript

  • CROP MODELING FRAMEWORK FOR STRATEGIC DECISIONS HarvestChoice Approach: Grid-based SSA-wide Crop Modeling System Jawoo Koo, IFPRI Africa RISING–CSISA Joint Monitoring and Evaluation Meeting, Addis Ababa, Ethiopia, 11-13 November 2013
  • Let’s talk… 1. Crop modeling approach in general 2. HarvestChoice approach 3. Limitations
  • *DSSAT Cropping System Model Ver. 4.0.2.000 May 21, 2009; 16:32:33 *RUN 1 : RAINFED LOW NITROGEN *DSSAT Cropping System Model Ver. 4.0.2.000 May 21, 2009; 16:32:33 MODEL : MZCER040 - MAIZE EXPERIMENT : UFGA8201 MZ NIT X IRR, GAINESVILLE 2N*3I *RUN 1 : RAINFED LOW NITROGEN TREATMENT *DSSAT Cropping LOW NITROGEN Ver. 4.0.2.000 1 10: RAINFED System Model May 21, 2009; 16:32:33 MODEL : MZCER040 - MAIZE CROP CULTIVAR : McCurdy 84aa ECOTYPE :IB0002 9: MAIZE EXPERIMENT : UFGA8201 MZ NIT X IRR, GAINESVILLE 2N*3I STARTING DATE 8: 1 *RUN FEB 25 1982RAINFED LOW NITROGEN : TREATMENT 1 : RAINFED LOW NITROGEN PLANTING DATE 7: FEB 26 1982MZCER040 - MAIZE 7.2 MODEL : PLANTS/m2 : ROW SPACING : 61.cm CROP : MAIZE CULTIVAR : McCurdy 84aa ECOTYPE :IB0002 WEATHER EXPERIMENT : UFGA 1982UFGA8201 MZ NIT X IRR, GAINESVILLE 2N*3I : 6 STARTING DATE : FEB 25 1982 SOIL TREATMENT 1 : TEXTURE : Yield : IBMZ910014 RAINFED LOW NITROGEN - Millhopper Fine Sand 5 PLANTING DATE : FEB 26 1982 PLANTS/m2 : 7.2 ROW SPACING : 61.cm (t/ha) SOIL INITIAL C : DEPTH:180cmMAIZE H2O:160.9mm NO3:: McCurdy 84aa CROP : EXTR. CULTIVAR 2.5kg/ha NH4: 12.9kg/ha :IB0002 ECOTYPE WEATHER 4 : UFGA 1982 WATER BALANCE : IRRIGATE : FEB 25 1982 STARTING DATE ON REPORTED DATE(S) SOIL : IBMZ910014 TEXTURE : - Millhopper Fine Sand 3 IRRIGATION PLANTING DATE : FEB 26 1982 : 13 mm IN 1 APPLICATIONS PLANTS/m2 : 7.2 ROW SPACING : 61.cm SOIL INITIAL C : DEPTH:180cm EXTR. H2O:160.9mm NO3: 2.5kg/ha NH4: 12.9kg/ha NITROGEN BAL. 2: SOIL-N & : UFGA WEATHER N-UPTAKE 1982 SIMULATION; NO N-FIXATION WATER BALANCE : IRRIGATE ON REPORTED DATE(S) N-FERTILIZER SOIL 1: 116 : IBMZ910014 3 APPLICATIONS kg/ha IN TEXTURE : - Millhopper Fine Sand IRRIGATION : 13 mm IN 1 APPLICATIONS RESIDUE/MANURE 0:INITIAL C :: DEPTH:180cm ;EXTR. H2O:160.9mm NO3: APPLICATIONS SOIL INITIAL 1000 kg/ha 0 kg/ha IN 0 2.5kg/ha NH4: 12.9kg/ha NITROGEN BAL. 0 : SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION 200 ENVIRONM. OPT. : BALANCE 500.00 100 WATER DAYL= : IRRIGATE ON REPORTED DATE(S) 0.00 TMIN= SRAD= 150 0.00 TMAX= 0.00 N-FERTILIZER : 116 kg/ha IN 3 APPLICATIONS IRRIGATION RAIN= : Fertilizer (kg[N]/ha)=mm IN 0.00 CO2 13 R330.00 1 APPLICATIONS WIND= DEW = 0.00 0.00 RESIDUE/MANURE : INITIAL : 1000 kg/ha ; 0 kg/ha IN 0 APPLICATIONS SIMULATION NITROGEN BAL. :Y SOIL-N & N-UPTAKE SIMULATION; :N N-FIXATION OPT : WATER : NITROGEN:Y N-FIX:N PHOSPH NO PESTS :N ENVIRONM. OPT. : DAYL= 0.00 SRAD= 0.00 TMAX= 0.00 TMIN= 0.00 N-FERTILIZER :C ET 116 kg/ha IN PHOTO : :R INFIL:S 3 APPLICATIONS HYDROL :R SOM :G RAIN= 0.00 CO2 = R330.00 DEW = 0.00 WIND= 0.00 MANAGEMENT RESIDUE/MANURE : INITIAL : :R1000 kg/ha ; OPT : PLANTING:R IRRIG FERT :R RESIDUE:N kg/ha IN 0 HARVEST:M WTH:M 0 APPLICATIONS SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N *SUMMARY OF ENVIRONM. GENETIC DAYL= PARAMETERS SOIL AND OPT. : INPUT 0.00 SRAD= 0.00 TMAX= 0.00 TMIN= 0.00 PHOTO :C ET :R INFIL:S HYDROL :R SOM :G RAIN= 0.00 CO2 = R330.00 DEW = 0.00 WIND= 0.00 MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:N HARVEST:M WTH:M SOIL LOWER UPPER SIMULATION SAT : WATER OPT EXTR INIT:Y ROOT NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N BULK pH NO3 NH4 ORG *SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS DEPTH LIMIT LIMIT SW PHOTO SW:C DIST SW ET DENS INFIL:S HYDROL :R SOM C :G :R cm cm3/cm3 MANAGEMENT OPT : PLANTING:R IRRIG g/cm3 FERT :R ugN/g ugN/g HARVEST:M WTH:M cm3/cm3 cm3/cm3 :R RESIDUE:N % SOIL LOWER UPPER SAT EXTR INIT ROOT BULK pH NO3 NH4 ORG ------------------------------------------------------------------------------*SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS DEPTH LIMIT LIMIT SW SW SW DIST DENS C 0- 5 0.026 0.096 0.230 0.070 0.086 1.00 1.30 7.00 0.10 0.50 2.00 cm cm3/cm3 cm3/cm3 cm3/cm3 g/cm3 ugN/g ugN/g % 5- 15 0.025 SOIL LOWER UPPER 0.086 EXTR INIT 0.086 0.230 0.061 SAT 1.00 1.30ROOT 7.00BULK 0.10 pH 0.50 NO3 1.00 NH4 ORG ------------------------------------------------------------------------------15- 30 0.025DEPTH LIMIT LIMIT 0.086 0.086 0.230 0.061 SW SW 0.70 SW 1.40DIST 7.00DENS 0.10 0.50 1.00 C 0- 5 0.026 0.096 0.230 0.070 0.086 1.00 1.30 7.00 0.10 0.50 2.00 30- 45 0.025 cm 0.086cm3/cm3 0.061 0.086 0.230 cm3/cm3 0.30 cm3/cm3 1.40 7.00 g/cm3 0.10 0.50 ugN/g ugN/g 0.50 % 5- 15 0.025 0.086 0.230 0.061 0.086 1.00 1.30 7.00 0.10 0.50 1.00 45- 60 0.025 0.086 0.230 0.061 0.086 ------------------------------------------------------------------------------0.30 1.40 7.00 0.10 0.50 0.50 15- 30 0.025 0.086 0.230 0.061 0.086 0.70 1.40 7.00 0.10 0.50 1.00 60- 90 0.0280- 5 0.026 0.096 0.230 0.070 0.086 0.090 0.230 0.062 0.076 0.05 1.451.00 7.001.30 0.107.00 0.600.10 0.100.50 2.00 30- 45 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50 90-120 0.0285- 15 0.025 0.086 0.230 0.061 0.086 0.090 0.230 0.062 0.076 0.03 1.451.00 7.001.30 0.107.00 0.500.10 0.100.50 1.00 45- 60 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50 120-150 0.029 0.1300.025 0.086 0.230 0.061 0.086 15- 30 0.230 0.101 0.130 0.00 1.450.70 7.001.40 0.107.00 0.500.10 0.040.50 1.00 60- 90 0.028 0.090 0.230 0.062 0.076 0.05 1.45 7.00 0.10 0.60 0.10 150-180 0.070 0.2580.025 0.086 0.230 0.061 0.086 30- 45 0.360 0.188 0.258 0.00 1.200.30 7.001.40 0.107.00 0.500.10 0.240.50 0.50 90-120 0.028 0.090 0.230 0.062 0.076 0.03 1.45 7.00 0.10 0.50 0.10 45- 60 0.025 0.086 0.230 0.061 0.086 0.30 1.40 7.00 0.10 0.50 0.50 120-150 0.029 0.130 0.230 0.101 0.130 0.00 1.45 7.00 0.10 0.50 0.04 TOT-180 6.2 22.20.028 0.090 0.230 0.062 0.076 kg/ha-->1.45 2.57.00 60- 90 45.3 16.1 21.4 <--cm 0.05 12.90.10 870800.60 0.10 150-180 0.070 0.258 0.360 0.188 0.258 0.00 1.20 7.00 0.10 0.50 0.24 SOIL ALBEDO 90-120 0.028 0.090 0.230 0.062 0.076 : 0.18 EVAPORATION LIMIT : 2.000.03 1.45 MIN. 7.00 FACTOR 0.10 : 1.000.50 0.10 RUNOFF CURVE # :60.00 120-150 0.029 0.130 0.230 RATE DRAINAGE 0.101 0.130 : 0.650.00 1.45 FERT.7.00 FACTOR0.10 : 0.800.50 0.04 TOT-180 6.2 22.2 45.3 16.1 21.4 <--cm - kg/ha--> 2.5 12.9 87080 150-180 0.070 0.258 0.360 0.188 0.258 0.00 1.20 7.00 0.10 0.50 0.24 SOIL ALBEDO : 0.18 EVAPORATION LIMIT : 2.00 MIN. FACTOR : 1.00 MAIZE CULTIVAR :IB0035-McCurdy 84aa ECOTYPE :IB0002 RUNOFF CURVE # :60.00 DRAINAGE RATE : 0.65 FERT. FACTOR : 0.80 P1 : 265.00 P2 6.2 :22.2 45.3 16.1 : 21.4 <--cm TOT-180 0.3000 P5 920.00 - kg/ha--> 2.5 12.9 87080 G2 : 990.00ALBEDO SOIL G3 :: 0.18 8.500 PHINT : 39.000LIMIT : 2.00 EVAPORATION MIN. FACTOR : 1.00 MAIZE CULTIVAR :IB0035-McCurdy 84aa ECOTYPE :IB0002 RUNOFF CURVE # :60.00 DRAINAGE RATE : 0.65 FERT. FACTOR : 0.80 P1 : 265.00 P2 : 0.3000 P5 : 920.00 *SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES G2 : 990.00 G3 : 8.500 PHINT : 39.000 MAIZE CULTIVAR :IB0035-McCurdy 84aa ECOTYPE :IB0002 RUN NO. P1 1 : 265.00 LOW NITROGEN RAINFED P2 : 0.3000 P5 : 920.00 *SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES G2 : 990.00 G3 : 8.500 PHINT : 39.000 OUTPUT Phenology flowering, grain/seed/tuber, maturity Yield component grain/seed/tuber, biomass, LAI Growth grain/seed/tuber, biomass, LAI CROP GROWTH BIOMASS CROP N STRESS RUN NO. 1 RAINFED LOW NITROGEN DATE AGE STAGE *SIMULATED CROP AND SOIL STATUS AT %MAIN DEVELOPMENT STAGES kg/ha LAI kg/ha H2O N ------ --- ---------- ----- ----- --- --- ---- ---CROP GROWTH BIOMASS CROP N STRESS 25 FEB 0RUN NO. Sim 1 Start 0 RAINFED LOW NITROGEN 0.00 0 0.0 0.00 0.00 DATE AGE STAGE kg/ha LAI kg/ha % H2O N 26 FEB 0 Sowing 0 0.00 0 0.0 0.00 0.00 ------ --- ---------- ----- ----- --- --- ---- ---27 FEB 1 Germinate GROWTH 0.00 CROP 0 BIOMASS 0 0.0 0.00 N CROP 0.00 STRESS 25 FEB 0 Start Sim 0 0.00 0 0.0 0.00 0.00 9 MAR 11 Emergence STAGE DATE AGE 29 0.00 kg/ha 1 4.4 0.00 0.00 H2O LAI kg/ha % N 26 FEB 0 Sowing 0 0.00 0 0.0 0.00 0.00 27 MAR 29------ --- ---------- ----- 4 ----- 0.00 --- ---- ---End Juveni 251 0.43 1.6 --- 0.09 27 FEB 1 Germinate 0 0.00 0 0.0 0.00 0.00 1 APR 3425 FEB Ini Start Sim Floral 0 304 0.44 0 4 0.00 0.00 0.0 0.00 0.00 1.5 0 0.50 9 MAR 11 Emergence 29 0.00 1 4.4 0.00 0.00 26 FEB 0 Sowing 0 0.00 0 0.0 0.00 0.00 27 MAR 29 End Juveni 251 0.43 4 1.6 0.00 0.09 27 FEB 1 Germinate 0 0.00 0 0.0 0.00 0.00 1 APR 34 Floral Ini 304 0.44 4 1.5 0.00 0.50 9 MAR 11 Emergence 29 0.00 1 4.4 0.00 0.00 27 MAR 29 End Juveni 251 0.43 4 1.6 0.00 0.09 1 APR 34 Floral Ini 304 0.44 4 1.5 0.00 0.50 Soil nitrogen balance, water balance, carbon balance MANAGEMENT CULTIVAR • Phenology • Max # of kernels • Kernel filling rate • • • • • • • Planting window Planting density Irrigation Inorganic fertilizer Organic manure Tillage Residue
  • DSSAT Decision Support System for AgrotechnologyTransfer  Process-based mathematical agronomy model  (Matured) Research tool for crop production analyses  Incorporates  Crop-Soil-Weather-Management models  Utilities to help users integrate data with models  Data: Weather, Soil, Experiments  Analysis: Evaluation, Risk/Uncertainty, Economics  Support: Graphics, Weather Generator, Parameter Estimator  CENTURY module simulates dynamics of soil organic matter and residue managements
  • INPUTS/OUTPUTS INPUT OUTPUT Site information Phenology coordinates, elevation, drainage flowering, grain/seed/tuber, maturity Daily weather Yield component solar radiation, temperature, rainfall grain/seed/tuber, biomass, LAI Soil Growth classification, water release curve, bulk density, organic carbon, root growth factor, drainage grain/seed/tuber, biomass, LAI Initial conditions nitrogen balance (e.g., leaching) water balance (e.g., runoff) carbon balance (e.g., emission) phosphorus balance previous crop, soil water and nitrogen content Management cultivar, planting, water and nutrient management, residue application, tillage, harvest, pest/disease damage Soil
  • We want yield responses for all commodities to all potential technologies *everywhere*  SAYS GROUPS OF ECONOMISTS
  • Improved variety 10 Planting in November 8 RESEARCH OBJECTIVE 6 4 2 Yield (t/ha) Model changes in outputs as a consequence of changes in inputs 0 100 80 60 N Fertilizer Application (kg[N]/ha) 40 20 0 N/A 20 40 Irrigation Threshold (%)
  • SChEF ECONOMIC EVALUTION Spatial Characterization and Evaluation Framework stakeholder-led evaluation scenarios, market-scale analysis seeds, fertilizer use, soil of changes & water management, interventions (e.g. conservative technologies, practices, agriculture, transport policies), winners and networks and costs, onlosers farm/post-harvest technologies, climate INVESTMENT & POLICY FORMULATION/ DECISIONS CHANGES BASELINE characterization, current & potential productivity, infrastructure, markets, profitability INGREDIENTS PSYCH SPAM CLIMEX TOUCAN SMAAT DREAM Production systems characterization Spatial Production Allocation Pest & Disease Modeling Crop Systems Simulation on Grids Spatial Market Access/Price Tool Market Scale Impact Evaluation
  • POINT VS. GRID*  Crop models are point-based applications, using point-based input data  Models can be run on grids, using grid-based input data
  • Linux Cluster CROP MODELING in global and regional-scale studies on grids
  • FERTILIZER PROFITABILITY: WHEAT in ETHIOPIA  Rainfed mean yield simulated for 100-year period  Recommended rate of fertilizer (100kg of DAP + 50kg of urea)  Spatial price modeling of input (fertilizer) and output (wheat)
  • EX-ANTE TECHNOLOGY IMPACT ASSESSMENT  Rainfed maize and wheat production in Ethiopia  Climate change scenarios: 2010-2050  Hypothetical full adoption of technology
  • RAINFALL/YIELD VARIABILITY: MAIZE in ETHIOPIA  Low-input versus high-input systems, simulated at 0.5-degree resolutions  Historical gridded weather data: 1980-2010
  • LIMITATIONS  Data!  Scale – Point-based biophysical model, extrapolated to the gridded space  Complexity – No pest/disease/weed models – No micronutrients Anchoring point
  • OPPORTUNITIES  Data!  Scale – Extrapolating over space – Counterfactuals  Complexity – Capturing the interactive impacts (difficult to assess causality otherwise) OUTPUT Phenology flowering, grain/seed/tuber, maturity Yield component grain/seed/tuber, biomass, LAI Growth grain/seed/tuber, biomass, LAI Soil nitrogen balance (e.g., leaching) water balance (e.g., runoff) carbon balance (e.g., emission) phosphorus balance
  • Africa Research in Sustainable Intensification for the Next Generation africa-rising.net