Structure
lecture2
1-Axial loads only
2-Loads applies at end
points only
3- Elements are joined
by pins only
1-Determine the force in each
member of the truss ?
 
 
 
 
0 1
0 2
0 3
2
tan tan
3
tan 0 4
3
X X X
Y Y Y
A Y
Y
X
...
2-Determine the force in each member of
the truss and indicate whether the the
members are in tension or compression ?
1 1...
3-Determine the force in each member of
the truss and indicate whether the the
members are in tension or compression ?
0
6...
At joint A
At joint C
At joint D
1 2
2
2
1
3
0
5
4
600 0
5
600*5
750 ( )
4
3
750 450 ( )
5
X
Y
F F F
F F
F N Compressio...
4-Determine the force in each member of
the truss and indicate whether the the
members are in tension or compression ?
At ...
*
1 1 3 2
1 1 3 2 2 2
2 22 2
2 2
2 2
1 3
1
3
0
0
0
0
0
( )
0
X
Y
Y
Y
C Y
Y
F
P F F F Cos
L
P F F F
h L
F
h
D P F
h L
h L
F...
6-Determine the force in each member of
the truss and indicate whether the the
members are in tension or compression ?
1
M...
Kites team l2
Kites team l2
Kites team l2
Kites team l2
Kites team l2
Kites team l2
Upcoming SlideShare
Loading in …5
×

Kites team l2

688 views
639 views

Published on

Published in: Sports, Health & Medicine
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
688
On SlideShare
0
From Embeds
0
Number of Embeds
29
Actions
Shares
0
Downloads
20
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Kites team l2

  1. 1. Structure lecture2
  2. 2. 1-Axial loads only 2-Loads applies at end points only 3- Elements are joined by pins only
  3. 3. 1-Determine the force in each member of the truss ?         0 1 0 2 0 3 2 tan tan 3 tan 0 4 3 X X X Y Y Y A Y Y X X Y F A B P F A B M B L Ph B h B L B B                          
  4. 4. 2-Determine the force in each member of the truss and indicate whether the the members are in tension or compression ? 1 1 2 2 2 2 3 2 3 22 2 0 0 0 0 ( ) 0 ( ) 0 ( ) X X X Y Y Y Y Y A Y Y F A P A P Ph F A B A B L Ph M Ph B L B L Ph Ph F F Tension L L F P F P Tension F L h L F F F Compression Lh L                                            
  5. 5. 3-Determine the force in each member of the truss and indicate whether the the members are in tension or compression ? 0 600 0 400 400*3 600*4 *6 0 600 200 X X Y Y Y C Y Y Y F C N F A C M A A N C N                  
  6. 6. At joint A At joint C At joint D 1 2 2 2 1 3 0 5 4 600 0 5 600*5 750 ( ) 4 3 750 450 ( ) 5 X Y F F F F F F N Compression F N Tension                                  4 5 0 600 ( ) 0 200 ( ) X Y F F N Compression F F N Compression             3 3 0 3 450 600 250 ( ) 5 XF F F N Tension             
  7. 7. 4-Determine the force in each member of the truss and indicate whether the the members are in tension or compression ? At joint B At joint C At joint A 0 500 sin 45 0 707.1 ( ) 0 45 0 500 ( ) X BC BC Y BC BA BA F N F N F N Compression F F Cos N F F N Tension                 0 707.1 45 0 500 ( ) 0 707.1 45 0 500 X CA CA Y Y Y F F Cos N F N Tension F C Sin N C N                  0 500 0 500 0 500 0 500 X X X Y Y Y F N A A N F N A A N                
  8. 8. * 1 1 3 2 1 1 3 2 2 2 2 22 2 2 2 2 2 1 3 1 3 0 0 0 0 0 ( ) 0 X Y Y Y C Y Y F P F F F Cos L P F F F h L F h D P F h L h L F P D h M D L P h F h P h D L F h                                              
  9. 9. 6-Determine the force in each member of the truss and indicate whether the the members are in tension or compression ? 1 Method of joints : we willbegainbyanalzingthe equilibrium of joint D , and then proceed to analyze joints Cand D 1 tan 26.57 2 At joint D 0 600 26.57 0 1341.64 ( ) 0 X DC DC Y F F Sin F N Compression F                     / / 1341.64 26.57 0 1200 ( ) At joint C 0 26.57 0 0 0 1341.64 ( ) At joint E 0 900 45 0 1272.79 ( ) 0 1200 1272.79 45 0 DE DE X CE CE Y CB X EB EB Y EA EA Cos F F N Tension F F Cos F F F N Compression F F Sin F N Compression F Cos F F                                2100 ( ) Note , the equilibrium analysis of joint Acan be used to determine the components of supports reaction atA N Tension

×