• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
De thi thu dai hoc khoi a nam 2013   toan
 

De thi thu dai hoc khoi a nam 2013 toan

on

  • 8,320 views

 

Statistics

Views

Total Views
8,320
Views on SlideShare
3,881
Embed Views
4,439

Actions

Likes
2
Downloads
55
Comments
0

6 Embeds 4,439

http://tinanninh.com 2566
http://baocongan.org 1007
http://tuyensinh2010.com 742
http://tintuc24h.info 116
http://diemthidaihoc2013.com 7
http://www.tinanninh.com 1

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    De thi thu dai hoc khoi a nam 2013   toan De thi thu dai hoc khoi a nam 2013 toan Document Transcript

    • Nguồn: diemthi.24h.com.vnĐiểm thi 24hXem tra điểm thi tốt nghiệp THPT Đề thi đáp án tốt nghiệp THPTĐề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đề thi tốt nghiệp THPTĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 -2013Môn thi : TOÁN (ĐỀ 28)Câu I: (2 điểm) Cho hàm số:  3 23 1 9 2y x m x x m      (1) có đồ thị là (Cm)1) Khảo sát và vẽ đồ thị hàm số (1) với m =1.2) Xác định m để (Cm) có cực đại, cực tiểu và hai điểm cực đại cực tiểu đối xứng vớinhau qua đường thẳng12y x .Câu II: (2,5 điểm)1) Giải phương trình:   3sin2 cos 3 2 3 os 3 3 os2 8 3cos sinx 3 3 0x x c x c x x       .2) Giải bất phương trình :  22 121 1log 4 5 log2 7x xx      .3) Tính diện tích hình phẳng giới hạn bởi các đường y=x.sin2x, y=2x, x=2.Câu III: (2 điểm)1) Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, cạnh bên hợpvới đáy một góc là 450. Gọi P là trung điểm BC, chân đường vuông góc hạ từ A’ xuống(ABC) là H sao cho12AP AH . gọi K là trung điểm AA’,   là mặt phẳng chứa HK vàsong song với BC cắt BB’ và CC’ tại M, N. Tính tỉ số thể tích ABCKMNA B C KMNVV.2) Giải hệ phương trình sau trong tập số phức: 222 2 2 2656 0a aa aa b ab b a a        Câu IV: (2,5 điểm)1) Cho m bông hồng trắng và n bông hồng nhung khác nhau. Tính xác suất để lấy được5 bông hồng trong đó có ít nhất 3 bông hồng nhung? Biết m, n là nghiệm của hệ sau:2 2 1319 192 2720mm n mnC C AP   2 ) Cho Elip có phương trình chính tắc2 2125 9x y  (E), viết phương trình đường thẳngsong song Oy và cắt (E) tại hai điểm A, B sao cho AB=4.3) Cho hai đường thẳng d1 và d2 lần lượt có phương trình:
    • Nguồn: diemthi.24h.com.vnĐiểm thi 24hXem tra điểm thi tốt nghiệp THPT Đề thi đáp án tốt nghiệp THPTĐề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đề thi tốt nghiệp THPT12: 23x td y tz t    21 2 1:2 1 5x y zd   Viết phương trình mặt phẳng cách đều hai đường thẳng d1 và d2?Câu V: Cho a, b, c 0 và 2 2 23a b c   . Tìm giá trị nhỏ nhất của biểu thức3 3 32 2 21 1 1a b cPb c a    ĐÁP ÁN ĐỀ SỐ 28Câu NỘI DUNG ĐiểmCâu I.b) 9)1(63 2 xmxyĐể hàm số có cực đậi, cực tiểu:09.3)1(9 2 m03)1( 2 m);31()31;(  mTa có   14)22(29)1(633131 22  mxmmxmxmxyGọi tọa độ điểm cực đại và cực tiểu là (x1; y1) và (x2; y2)14)22(2 121  mxmmy14)22(2 222  mxmmyVậy đường thẳng đi qua hai điểm cực đại và cực tiểu là14)22(2 2 mxmmyVì hai điểm cực đại và cực tiểu đối xứng qua đt xy21 ta có điều kiện cầnlà  121.)22(2 2 mm1222 mm310322mmmmTheo định lí Viet ta có:3.)1(22121xxmxxKhi m = 1 ptđt đi qua hai điểm CĐ và CT là:y = - 2x + 5. Tọa độ trung điểm CĐ và CT là:0,25đ0,25đ0,5đ
    • Nguồn: diemthi.24h.com.vnĐiểm thi 24hXem tra điểm thi tốt nghiệp THPT Đề thi đáp án tốt nghiệp THPTĐề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đề thi tốt nghiệp THPTCâu II.1210)(222242212121xxyyxxTọa độ trung điểm CĐ và CT là (2; 1) thuộc đường thẳng xy21 1 mthỏa mãn.Khi m = -3 ptđt đi qua hai điểm CĐ và CT là: y = -2x – 11. Tọa độ trungđiểm CĐ và CT là:9210)(2222212121xxyyxxTọa độ trung điểm CĐ và CT là (-2; 9) không thuộc đường thẳngxy21 3 m không thỏa mãn.Vậy m = 1 thỏa mãn điều kiện đề bài.1) Giải phương trình:033)sincos.3(833cos36cos.32cos.sin6cos.sin2033)sincos.3(82cos.33cos.32)3(cos2sin2323xxxxxxxxxxxxxx0)sincos3(8)sincos3(cos.6)sincos3(cos2 2 xxxxxxxx)(4cos1cos3tan04cos3cos0sincos30)8cos6cos2)(sincos3(22loaixxxxxxxxxxx kkxkx,232) Giải bất phương trình:)71(log)54(log212122xxx (1)Đk:7);1()5;(070542xxxxx)1()5;7(  xTừ (1)71log2)54(log 222xxx0,25đ0,25đ0,25đ0,25đ
    • Nguồn: diemthi.24h.com.vnĐiểm thi 24hXem tra điểm thi tốt nghiệp THPT Đề thi đáp án tốt nghiệp THPTĐề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đề thi tốt nghiệp THPT5275410491454)7(log)54(log222222xxxxxxxxxKết hợp điều kiện: Vậy BPT có nghiệm: )527;7(x3) Ta có: x.sin2x = 2x x.sin2x – 2x = 0  x(sin2x – 2) =0 x = 0Diện tích hình phẳng là:  2020)22(sin)22sin.(dxxxdxxxxSĐặtxxvdxdudxxdvxu222cos)22(sin  20202222cos222cos.(dxxxxxxS202242sin24 xxS44424222 S (đvdt)Gọi Q, I, J lần lượt làtrung điểm B’C’, BB’, CC’ta có:23aAP 3aAH Vì AHA vuông cân tại H.Vậy 3 aHA HASV ABCCBABCA . Ta có4323.21 2aaaSABC  (đvdt)0,5đ0,25đ0,25đ0,25đ0,25đ0,25đ0,25đ0,25đ45EKJIABCCBAPHQNM
    • Nguồn: diemthi.24h.com.vnĐiểm thi 24hXem tra điểm thi tốt nghiệp THPT Đề thi đáp án tốt nghiệp THPTĐề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đề thi tốt nghiệp THPTCâu III.4343.332aaaV CBABCA  (đvtt) (1)Vì AHA vuông cân  CCBBHKAAHK G ọi E = MN KH BM = PE = CN (2)mà AA’ = 22 AHHA  = 633 22aaa 4626 aCNPEBMaAK Ta có thể tích K.MNJI là:1.31 1 62 4 4MNJIV S KEaKE KH AA  26 6. . ( )4 4MNJIa aS MN MI a dvdt  2 31 6 6( )3 4 4 8KMNJIa a aV dvtt  3 32 3 318 83 28 8ABCKMNA B C KMNa aVa aV  2) Giải hệ phương trình sau trong tập số phức:06)()(5622222aabbaaaaaaĐK: 02 aaTừ (1) 06)(5)( 222 aaaa6122aaaaKhi 12 aa thay vào (2)2.2312.231060622ibibbbbb0,25đ0,25đ0,25đ0,25đ0,2 5đ0,25đ
    • Nguồn: diemthi.24h.com.vnĐiểm thi 24hXem tra điểm thi tốt nghiệp THPT Đề thi đáp án tốt nghiệp THPTĐề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đề thi tốt nghiệp THPT231231012iaiaaaKhi 62 aa23aaThay vào (2)25125101066622bbbbbbVậy hệ pt có nghiệm (a, b) là:  231;2231,231;2231 iiii  231;2231,231;2231 iiii    251;2,251;2,251;3,251;37202192911232nmnmmPAcCTừ (2): 761!6720)!1(  nnn (3)Thay n = 7 vào (1))!1(!.2199!8!2!10)!2(!2!mmmm099201999021929452)1(22mmmmmmmm119  m vì 10 mmVậy m = 10, n = 7. Vậy ta có 10 bông hồng trắng và 7 bông hồng nhung, đểlấy được ít nhất 3 bông hồng nhung trong 5 bông hồng ta có các TH sau:0,25đ0,25đ0,25đ
    • Nguồn: diemthi.24h.com.vnĐiểm thi 24hXem tra điểm thi tốt nghiệp THPT Đề thi đáp án tốt nghiệp THPTĐề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đề thi tốt nghiệp THPTCâu IV:TH1: 3 bông hồng nhung, 2 bông hồng trắng có:1575. 21037 CC cáchTH2: 4 bông hồng nhung, 1 bông hồng trắng có:350. 11047 CC cáchTH3: 5 bông hồng nhung có:2157 C cáchcó 1575 + 350 + 21 = 1946 cách.Số cách lấy 4 bông hồng thường%45,31618819466188517PC2) Gọi ptđt // Oy là: x = a (d) tung độ giao điểm (d) và Elip là:25252519192522222aayya22225532525.9 ayay Vậy  222553;,2553; aaBaaA 22556;0 aAB91259100259100253102542556||2222aaaaAB355 aVậy phương trình đường thẳng:355,355 xx3)đường thẳng d2 có PTTS là:51221tztytxvectơ CP của d1 và d2 là: 1 2(1;1; 1), (2;1;5)d du u  VTPT của mp( ) là 1 2. (6; 7; 1)d dn u u     pt mp( ) có dạng 6x – 7y – z + D = 00,25đ0,25đ0,25đ0,25đ
    • Nguồn: diemthi.24h.com.vnĐiểm thi 24hXem tra điểm thi tốt nghiệp THPT Đề thi đáp án tốt nghiệp THPTĐề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đề thi tốt nghiệp THPTCâu V:Đường thẳng d1 và d2 lần lượt đi qua 2đ’ M(2; 2; 3) và N(1; 2; 1)( ,( )) ( ,( ))|12 14 3 | | 6 14 1 || 5 | | 9 | 7d M d ND DD D D               Vậy PT mp( ) là: 3x – y – 4z +7 0Ta có: P + 3 = 223223223111aacccbbba2411212246 22223bbabaP241121222223ccbcb 241121222223aacac 363636216321632163cba62223 829)(2223223 cbaP232232292232296 3 PĐể PMin khi a = b = c = 10,25đ0,25đ0,25đ0,25đ0,25đ