ESTÁNDARES LANS INALÁMBRICAS Y SUS TOPOLOGÍAS

5,557 views

Published on

Published in: Education
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
5,557
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
98
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

ESTÁNDARES LANS INALÁMBRICAS Y SUS TOPOLOGÍAS

  1. 1. ESTÁNDARES LANS INALÁMBRICAS<br />Y SUS TOPOLOGÍAS<br />
  2. 2. Una comprensión de las reglamentaciones y los estándares que se aplican a la tecnología inalámbrica permitirá la interoperabilidad y cumplimiento de todas las redes existentes. Como en el caso de las redes cableadas, la IEEE es la principal generadora de estándares para las redes inalámbricas. Los estándares han sido creados en el marco de las reglamentaciones creadas por el Comité Federal de Comunicaciones (Federal CommunicationsCommission - FCC).<br />
  3. 3. La tecnología clave que contiene el estándar 802.11 es el Espectro de Dispersión de Secuencia Directa (DSSS). El DSSS se aplica a los dispositivos inalámbricos que operan dentro de un intervalo de 1 a 2 Mbps. Un sistema de DSSS puede transmitir hasta 11 Mbps, pero si opera por encima de los 2 Mbps se considera que no cumple con la norma.<br />
  4. 4. El siguiente estándar aprobado fue el 802.11b, que aumentó las capacidades de transmisión a 11 Mbps. Aunque las WLAN de DSSS podían interoperar con las WLAN de Espectro de Dispersión por Salto de Frecuencia (FHSS), se presentaron problemas que motivaron a los fabricantes a realizar cambios en el diseño. En este caso, la tarea del IEEE fue simplemente crear un estándar que coincidiera con la solución del fabricante.<br />
  5. 5. 802.11b también recibe el nombre de Wi-Fi™ o inalámbrico de alta velocidad y se refiere a los sistemas DSSS que operan a 1, 2; 5,5 y 11 Mbps. Todos los sistemas 802.11b cumplen con la norma de forma retrospectiva, ya que también son compatibles con 802.11 para velocidades de transmisión de datos de 1 y 2 Mbps sólo para DSSS. Esta compatibilidad retrospectiva es de suma importancia ya que permite la actualización de la red inalámbrica sin reemplazar las NIC o los puntos de acceso.<br />
  6. 6. 802.11a abarca los dispositivos WLAN que operan en la banda de transmisión de 5 GHZ. El uso del rango de 5 GHZ no permite la interoperabilidad de los dispositivos 802.11b ya que éstos operan dentro de los 2,4 GHZ. 802.11ª puede proporcionar una tasa de transferencia de datos de 54 Mbps y con una tecnología propietaria que se conoce como "duplicación de la velocidad" ha alcanzado los 108 Mbps. En las redes de producción, la velocidad estándar es<br />de 20-26 Mbps.<br />
  7. 7. El estándar 802.11n hace uso simultáneo de ambas bandas, 2,4 Ghz y 5,4 Ghz. Las redes que trabajan bajo los estándares 802.11b y 802.11g, tras la reciente ratificación del estándar, se empiezan a fabricar de forma masiva y es objeto de promociones de los operadores ADSL, de forma que la masificación de la citada tecnología parece estar en camino. Todas las versiones de 802.11xx, aportan la ventaja de ser compatibles entre sí, de forma que el usuario no necesitará nada más que su adaptador wifi integrado, para poder conectarse a la red.<br />
  8. 8. El estándar combinado 802.11c es utilizado para la comunicación de dos redes distintas o de diferentes tipos, así como puede ser tanto conectar dos edificios distantes el uno con el otro, así como conectar dos redes de diferente tipo a través de una conexión inalámbrica. El protocolo ‘c’ es más utilizado diariamente, debido al costo que implica las largas distancias de instalación con fibra óptica, que aunque más fidedigna, resulta más costosa tanto en instrumentos monetarios como en tiempo de instalación. <br />
  9. 9. 802.11d<br />Es un complemento del estándar 802.11 que está pensado para permitir el uso internacional de las redes 802.11 locales. Permite que distintos dispositivos intercambien información en rangos de frecuencia según lo que se permite en el país de origen del dispositivo.<br />La especificación IEEE 802.11e ofrece un estándar inalámbrico que permite interoperar entre entornos públicos, de negocios y usuarios residenciales, con la capacidad añadida de resolver las necesidades de cada sector. A diferencia de otras iniciativas de conectividad sin cables, ésta puede considerarse como uno de los primeros estándares inalámbricos que permite trabajar en entornos domésticos y empresariales. <br />
  10. 10. 802.11f Es una recomendación para proveedores de puntos de acceso que permite que los productos sean más compatibles. Utiliza el protocolo IAPP que le permite a un usuario itinerante cambiarse claramente de un punto de acceso a otro mientras está en movimiento sin importar qué marcas de puntos de acceso se usan en la infraestructura de la red. También se conoce a esta propiedad simplemente como itinerancia.<br />802.11p Este estándar opera en el espectro de frecuencias de 5,9 GHz, especialmente indicado para automóviles. Será la base de las comunicaciones dedicadas de corto alcance (DSRC) en Norteamérica. La tecnología DSRC permitirá el intercambio de datos entre vehículos y entre automóviles e infraestructuras en carretera.<br />
  11. 11. 802.11v Esto permitirá una gestión de las estaciones de forma centralizada (similar a una red celular) o distribuida, a través de un mecanismo de capa 2 IEEE 802.11v servirá para permitir la configuración. z cliente. <br />802.11y Este estándar Publicado en noviembre de 2008, y permite operar en la banda de 3650 a 3700 MHz (excepto cuando pueda interferir con una estación terrestre de comunicaciones por satélite) en EEUU, aunque otras bandas en diferentes dominios reguladores también se están estudiando.<br />
  12. 12. Topologías de redes inalámbricas<br />Las topologías puras son tres: topología en bus, en estrella y en anillo. <br />
  13. 13. TOPOLOGÍA EN BUS<br />Consiste en un cable al que se conectan todos los nodos de la red. Un nodo es cualquier estación de trabajo, terminal, impresora o cualquier otro dispositivo que pueda ser conectado a la red, ya sea de forma directa o indirecta (estando a disposición de la red al pertenecer a un dispositivo ya conectado a ella). <br />
  14. 14. TOPOLOGÍA EN ANILLO<br />Consiste en un cable en el que se juntan el origen con el extremo, formando un anillo cerrado. A él se conectan los nodos de la red. No requiere de terminadores, ya que el cable se cierra en sí mismo.<br />
  15. 15. TOPOLOGÍA EN ESTRELLA<br />En este caso, cada nodo de la red se conecta a un punto central, formando una especie de estrella. El punto es tan sólo un dispositivo de conexiones, o uno del mismo tipo más una estación de trabajo. Dependiendo de sí el dispositivo central es pasivo (únicamente serviría de centralizador de conexiones) o activo (centralizando las conexiones y regenerando la señal que le llega), se tratará de una estrella pasiva ó activa. Este dispositivo central se llama "concentrador" (o hub).<br />

×