Semi-analytic Modeling: Creation of the Far-IR Populations Andrew Benson, Caltech
<ul><li>Modeling galaxy formation </li></ul><ul><li>Black holes </li></ul><ul><li>Substructure </li></ul><ul><li>Star form...
GALFORM Model GALFORM Model Gravitational collapse Dark matter and gas distributions Gas cooling rates Star formation, fee...
How Do We Model Galaxy Formation? Cole et al. 2000 Combination of simulations,  analytic results and recipes  with paramet...
Tracking the Growth of Black Holes Rowena Malbon et al. 2006 <ul><li>Black holes grow by: </li></ul><ul><li>Cold gas accre...
Fundamental Plane of Ellipticals Cesario Almeida et al. 2006 Comparison of predicted sizes of local bulge  dominated galax...
Physical Model: Star Formation Gravitational collapse Dark matter and gas distributions Gas cooling rates Star formation, ...
Need for “Complicated” Models? Mass to light ratio Total group  luminosity Variation of M/L with total group luminosity sh...
The Challenge of (sub-)mm Galaxies Creation of the Far-IR Populations SPICA Workshop, November 2006
The Challenge of (sub-)mm Galaxies SCUBA image of HDF  More star formation at high-z? Creation of the Far-IR Populations S...
The Challenge of (sub-)mm Galaxies *Population of sources missed by Lyman-break dropout & UV imaging *Possibly more star f...
Modeling Dust Extinction & Emission *Naïve model:  assume dust temperature  *Physically inconsistent! *Dust temperature sh...
<ul><li>Physical model for dust grains, chosen to reproduce local ISM extinction law </li></ul><ul><li>Mixture of graphite...
<ul><li>Free-free radiation from HII regions ionized by young stars </li></ul>Model for Radio Emission (Bressan, Silva & G...
Modeling Dust Extinction & Emission <ul><li>Complete star formation history of galaxy, including starbursts triggered </li...
Modeling Dust Extinction & Emission <ul><li>Complete star formation history of galaxy, including starbursts triggered </li...
Modeling Dust Extinction & Emission <ul><li>GRASIL :  Silva et al. 1998 </li></ul><ul><li>Emission from stars </li></ul><u...
Modeling Dust Extinction & Emission <ul><li>Complete star formation history of galaxy, including starbursts triggered </li...
Examples of Predicted SF Rates Star formation rate GREEN: total RED: Starbursts BLUE:  Quiescent Disks Creation of the Far...
Example SEDs from CDM Model Quiescent spiral  Ongoing burst dust stars Creation of the Far-IR Populations SPICA Workshop, ...
Model SEDs Compared to Observations M51 (spiral)  M82 (starburst) <ul><li>GRASIL   model can reproduce observed SEDs of lo...
Cosmic Background from Galaxies no dust bursts quiescent total <ul><li>integrated background slightly too high c.f. COBE o...
Standard High-z Predictions 850 micron counts Lyman-break luminosity function at z=3  Creation of the Far-IR Populations S...
Number Counts in near- & mid-IR Spitzer 3.6   m  Spitzer 8   m <ul><li>3.6   m : counts dominated by stellar emission <...
Changes Made to Improve Predictions <ul><li>Change to a constant star formation timescale, rather than one that scales </l...
Changes Made to Improve Predictions <ul><li>Change to a constant star formation timescale, rather than one that scales </l...
Predictions with a Flat IMF in Starbursts 850 micron counts Lyman break LF z=3 Creation of the Far-IR Populations SPICA Wo...
Which Changes Drive Agreement? Use standard IMF in bursts Switch off minor merger bursts Creation of the Far-IR Population...
Predicted/Observed 850   N(z) Baugh et al. (2005) Chapman et al. (2003) Creation of the Far-IR Populations SPICA Workshop...
Predictions at Other Wavelengths 8 micron counts and N(z) : dust & PAHs start to dominate Creation of the Far-IR Populatio...
Predictions at Other Wavelengths 160 micron number counts and redshift distribution Creation of the Far-IR Populations SPI...
Predictions at Other Wavelengths 24 micron number counts and redshift distribution Accurate modelling of PAHs essential Cr...
Predictions at Other Wavelengths Discrepancy with inferred Photo-z n(z) at 24 microns Sources brighter than  83 micro Jy. ...
Evidence in Support of Top-Heavy IMF Model with top-heavy  IMF matches metal  abundances in ICM Nagashima et al. 2005 Type...
Number Counts at 24  m Accurate modelling of PAH emission is crucial Creation of the Far-IR Populations SPICA Workshop, N...
Number Counts in Far-IR 70   m  160   m Creation of the Far-IR Populations SPICA Workshop, November 2006
Predicted dN/dz at 3.6  m Creation of the Far-IR Populations SPICA Workshop, November 2006
Predicted dN/dz at 24  m Creation of the Far-IR Populations SPICA Workshop, November 2006
Predicted dN/dz at 70  m Creation of the Far-IR Populations SPICA Workshop, November 2006
Conclusions <ul><li>Galaxy formation modeling: </li></ul><ul><li>(Necessarily) complicated </li></ul><ul><li>Can provide a...
 
Evolution of stellar mass function <ul><li>high-mass end evolves by factor ~10 from z=0 to 3 </li></ul><ul><li>predicted e...
Physical Model: Star Formation <ul><li>Galaxy formation models rely on empirical rules </li></ul><ul><li>Galaxy formation ...
Formation of a Galaxy in  G ALFORM <ul><li>Model predicts full dynamics of forming galaxy as a function of time </li></ul>...
Why do we need to do better? <ul><li>Tests of dark matter require knowledge of galaxy formation </li></ul><ul><li>Observat...
Building the Luminosity Function <ul><li>How do we make the luminosity function of galaxies? </li></ul><ul><li>How do we m...
Global star formation history Dynamical time scaling Fixed timescale Baugh et al. 2005
Modelling dust extinction and emission <ul><li>Complete star formation history of galaxy, including starbursts triggered <...
Upcoming SlideShare
Loading in …5
×

Semi-Analytic Modeling: Creation of the Far-IR Populations

639 views
536 views

Published on

Talk given at the US SPICA workshop at JPL, Wednesday November 1, 2006.

Published in: Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
639
On SlideShare
0
From Embeds
0
Number of Embeds
51
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Semi-Analytic Modeling: Creation of the Far-IR Populations

    1. 1. Semi-analytic Modeling: Creation of the Far-IR Populations Andrew Benson, Caltech
    2. 2. <ul><li>Modeling galaxy formation </li></ul><ul><li>Black holes </li></ul><ul><li>Substructure </li></ul><ul><li>Star formation </li></ul><ul><li>Application to sub-mm galaxies </li></ul><ul><li>Dust extinction & emission </li></ul><ul><li>Radio emission </li></ul><ul><li>Results </li></ul><ul><li>Number counts, dN/dz </li></ul><ul><li>Conclusions </li></ul>Talk Overview Creation of the Far-IR Populations SPICA Workshop, November 2006
    3. 3. GALFORM Model GALFORM Model Gravitational collapse Dark matter and gas distributions Gas cooling rates Star formation, feedback Dynamical friction Luminosities, colors Positions and velocities Star formtn. rate, ages, composition Structure & Dynamics Morphology State of the Art: Semi-analytic Models Collaborators Carlos Frenk, Shaun Cole, Cedric Lacey, Carlton Baugh, Richard Bower, John Helly, Rowena Malbon, Cesario Almeida ( ICC, Durham, U.K. ) Martin Stringer ( Oxford University, UK/Caltech ) Creation of the Far-IR Populations SPICA Workshop, November 2006
    4. 4. How Do We Model Galaxy Formation? Cole et al. 2000 Combination of simulations, analytic results and recipes with parameters Creation of the Far-IR Populations SPICA Workshop, November 2006
    5. 5. Tracking the Growth of Black Holes Rowena Malbon et al. 2006 <ul><li>Black holes grow by: </li></ul><ul><li>Cold gas accretion in </li></ul><ul><li>galaxy mergers </li></ul><ul><li>Mergers of black holes </li></ul><ul><li>Kauffmann & Haehnelt 2000 </li></ul><ul><li>Cattaneo et al. 2005 </li></ul>Creation of the Far-IR Populations SPICA Workshop, November 2006
    6. 6. Fundamental Plane of Ellipticals Cesario Almeida et al. 2006 Comparison of predicted sizes of local bulge dominated galaxies with SDSS analysis by Bernardi et al. 2005 Creation of the Far-IR Populations SPICA Workshop, November 2006
    7. 7. Physical Model: Star Formation Gravitational collapse Dark matter and gas distributions Gas cooling rates Star formation, feedback Dynamical friction GALFORM Model GALFORM Model Supernovae energetics/dynamics Molecular cloud collisions Pressure-induced star formation Galactic fountain Multi-phase interstellar medium Creation of the Far-IR Populations SPICA Workshop, November 2006
    8. 8. Need for “Complicated” Models? Mass to light ratio Total group luminosity Variation of M/L with total group luminosity shows how the efficiency of galaxy formation should depend on halo mass. Galaxy formation most efficient Effectiveness of feedback processes and variation in gas cooling time within haloes of different mass drive change in M/L Eke et al. 2004, 2005 Creation of the Far-IR Populations SPICA Workshop, November 2006
    9. 9. The Challenge of (sub-)mm Galaxies Creation of the Far-IR Populations SPICA Workshop, November 2006
    10. 10. The Challenge of (sub-)mm Galaxies SCUBA image of HDF More star formation at high-z? Creation of the Far-IR Populations SPICA Workshop, November 2006
    11. 11. The Challenge of (sub-)mm Galaxies *Population of sources missed by Lyman-break dropout & UV imaging *Possibly more star formation at high redshift than previously thought *Inferred SFRs huge ~ 1000 Msun/yr! *Is all emission due to starburst or is some from an AGN? *Is a SCUBA source an elliptical galaxy in formation? *Massive galaxies in place at high-z? How can SCUBA sources be accommodated in hierarchical models? Creation of the Far-IR Populations SPICA Workshop, November 2006
    12. 12. Modeling Dust Extinction & Emission *Naïve model: assume dust temperature *Physically inconsistent! *Dust temperature should be determined by thermal equilibrium between heating and cooling of grains *With the bolometric luminosity and dust mass as parameters, and with the dust in thermal equilibrium, Which gives : Creation of the Far-IR Populations SPICA Workshop, November 2006
    13. 13. <ul><li>Physical model for dust grains, chosen to reproduce local ISM extinction law </li></ul><ul><li>Mixture of graphite & silicate grains, with distribution of grain sizes </li></ul><ul><li>Includes PAHs (polycyclic aromatic hydrocarbon molecules) </li></ul>Modeling Dust Extinction & Emission <ul><li>Assume dust/gas proportional to gas metallicity </li></ul><ul><li>Optical depth for dust depends on both dust mass and galaxy radius </li></ul>Creation of the Far-IR Populations SPICA Workshop, November 2006
    14. 14. <ul><li>Free-free radiation from HII regions ionized by young stars </li></ul>Model for Radio Emission (Bressan, Silva & Granato 2002) <ul><li>Synchrotron radiation from relativistic electrons accelerated in supernova remnants – assume const frac of SN energy radiated </li></ul>Creation of the Far-IR Populations SPICA Workshop, November 2006
    15. 15. Modeling Dust Extinction & Emission <ul><li>Complete star formation history of galaxy, including starbursts triggered </li></ul><ul><li>by galaxy mergers. </li></ul><ul><li>2. Scale lengths of the disk and bulge components, calculated by conserving </li></ul><ul><li>angular momentum and applying conservation of energy. </li></ul><ul><li>3. Metallicity and cold gas mass: dust mass. </li></ul>Creation of the Far-IR Populations SPICA Workshop, November 2006
    16. 16. Modeling Dust Extinction & Emission <ul><li>Complete star formation history of galaxy, including starbursts triggered </li></ul><ul><li>by galaxy mergers. </li></ul><ul><li>2. Scale lengths of the disk and bulge components, calculated by conserving </li></ul><ul><li>angular momentum and applying conservation of energy. </li></ul><ul><li>Metallicity and cold gas mass: dust mass. </li></ul><ul><li>A spectro-photometric model to compute dust extinction and emission. </li></ul>Creation of the Far-IR Populations SPICA Workshop, November 2006
    17. 17. Modeling Dust Extinction & Emission <ul><li>GRASIL : Silva et al. 1998 </li></ul><ul><li>Emission from stars </li></ul><ul><li>Extinction by dust in two </li></ul><ul><li>components: clouds & diffuse </li></ul><ul><li>Computes temperature at </li></ul><ul><li>each location in galaxy </li></ul><ul><li>applying thermal eqm. </li></ul><ul><li>Composite dust spectrum </li></ul>Creation of the Far-IR Populations SPICA Workshop, November 2006
    18. 18. Modeling Dust Extinction & Emission <ul><li>Complete star formation history of galaxy, including starbursts triggered </li></ul><ul><li>by galaxy mergers </li></ul>Creation of the Far-IR Populations SPICA Workshop, November 2006
    19. 19. Examples of Predicted SF Rates Star formation rate GREEN: total RED: Starbursts BLUE: Quiescent Disks Creation of the Far-IR Populations SPICA Workshop, November 2006
    20. 20. Example SEDs from CDM Model Quiescent spiral Ongoing burst dust stars Creation of the Far-IR Populations SPICA Workshop, November 2006
    21. 21. Model SEDs Compared to Observations M51 (spiral) M82 (starburst) <ul><li>GRASIL model can reproduce observed SEDs of local galaxies (Silva etal 1998, Bressan etal 2002) </li></ul>Creation of the Far-IR Populations SPICA Workshop, November 2006
    22. 22. Cosmic Background from Galaxies no dust bursts quiescent total <ul><li>integrated background slightly too high c.f. COBE obs in sub-mm </li></ul><ul><li>compatable with TeV gamma-ray absorption in mid-IR </li></ul><ul><li>somewhat too low c.f. observed number counts in optical/NIR </li></ul>TeV absn Creation of the Far-IR Populations SPICA Workshop, November 2006
    23. 23. Standard High-z Predictions 850 micron counts Lyman-break luminosity function at z=3 Creation of the Far-IR Populations SPICA Workshop, November 2006
    24. 24. Number Counts in near- & mid-IR Spitzer 3.6  m Spitzer 8  m <ul><li>3.6  m : counts dominated by stellar emission </li></ul><ul><li>8  m : contribn from PAH emission becomes signif at bright fluxes </li></ul>no dust bursts quiescent total Creation of the Far-IR Populations SPICA Workshop, November 2006
    25. 25. Changes Made to Improve Predictions <ul><li>Change to a constant star formation timescale, rather than one that scales </li></ul><ul><li>with the dynamical time </li></ul><ul><li>2. Minor mergers trigger starbursts in gas rich disks </li></ul>Creation of the Far-IR Populations SPICA Workshop, November 2006
    26. 26. Changes Made to Improve Predictions <ul><li>Change to a constant star formation timescale, rather than one that scales </li></ul><ul><li>with the dynamical time </li></ul><ul><li>Minor mergers trigger starbursts in gas rich disks </li></ul><ul><li>Use a flat IMF in starbursts: </li></ul><ul><li>more energy output in UV by high mass stars </li></ul><ul><li>more energy absorbed by dust </li></ul><ul><li>more dust to prevent heating to too high a temperature </li></ul>Creation of the Far-IR Populations SPICA Workshop, November 2006
    27. 27. Predictions with a Flat IMF in Starbursts 850 micron counts Lyman break LF z=3 Creation of the Far-IR Populations SPICA Workshop, November 2006
    28. 28. Which Changes Drive Agreement? Use standard IMF in bursts Switch off minor merger bursts Creation of the Far-IR Populations SPICA Workshop, November 2006
    29. 29. Predicted/Observed 850  N(z) Baugh et al. (2005) Chapman et al. (2003) Creation of the Far-IR Populations SPICA Workshop, November 2006
    30. 30. Predictions at Other Wavelengths 8 micron counts and N(z) : dust & PAHs start to dominate Creation of the Far-IR Populations SPICA Workshop, November 2006
    31. 31. Predictions at Other Wavelengths 160 micron number counts and redshift distribution Creation of the Far-IR Populations SPICA Workshop, November 2006
    32. 32. Predictions at Other Wavelengths 24 micron number counts and redshift distribution Accurate modelling of PAHs essential Creation of the Far-IR Populations SPICA Workshop, November 2006
    33. 33. Predictions at Other Wavelengths Discrepancy with inferred Photo-z n(z) at 24 microns Sources brighter than 83 micro Jy. Creation of the Far-IR Populations SPICA Workshop, November 2006
    34. 34. Evidence in Support of Top-Heavy IMF Model with top-heavy IMF matches metal abundances in ICM Nagashima et al. 2005 Type I & Type II SN Creation of the Far-IR Populations SPICA Workshop, November 2006
    35. 35. Number Counts at 24  m Accurate modelling of PAH emission is crucial Creation of the Far-IR Populations SPICA Workshop, November 2006
    36. 36. Number Counts in Far-IR 70  m 160  m Creation of the Far-IR Populations SPICA Workshop, November 2006
    37. 37. Predicted dN/dz at 3.6  m Creation of the Far-IR Populations SPICA Workshop, November 2006
    38. 38. Predicted dN/dz at 24  m Creation of the Far-IR Populations SPICA Workshop, November 2006
    39. 39. Predicted dN/dz at 70  m Creation of the Far-IR Populations SPICA Workshop, November 2006
    40. 40. Conclusions <ul><li>Galaxy formation modeling: </li></ul><ul><li>(Necessarily) complicated </li></ul><ul><li>Can provide a very diverse set of predictions </li></ul><ul><li>Application to IR/sub-mm/mm </li></ul><ul><li>Requires detailed treatment of dust </li></ul><ul><li>GRASIL model provides this </li></ul><ul><li>Makes matching the data difficult! </li></ul><ul><li>Seems to require a top-heavy IMF in starbursts </li></ul><ul><li>Galaxy catalogs available at www.galform.org </li></ul><ul><li>More extensive catalogs available soon...... </li></ul>Creation of the Far-IR Populations SPICA Workshop, November 2006
    41. 42. Evolution of stellar mass function <ul><li>high-mass end evolves by factor ~10 from z=0 to 3 </li></ul><ul><li>predicted evoln from z=0 to ~1 may be too rapid c.f. obs </li></ul><ul><li>caveat: variable IMF complicates comparison with obs </li></ul>Modeling Galaxy Formation IR/sub-mm/mm Sack Lunch, September 2006
    42. 43. Physical Model: Star Formation <ul><li>Galaxy formation models rely on empirical rules </li></ul><ul><li>Galaxy formation models rely on empirical rules </li></ul><ul><li>Star formation </li></ul><ul><li>Feedback </li></ul><ul><li>Good physical understanding of these is emerging </li></ul><ul><li>Use cosmological data (0.01-100 Mpc) to constrain star formation models (1-10pc)? </li></ul><ul><li>Galaxy formation models rely on empirical rules </li></ul><ul><li>Star formation </li></ul>rules used in G ALFORM <ul><li>Galaxy formation models rely on empirical rules </li></ul><ul><li>Star formation </li></ul><ul><li>Feedback </li></ul><ul><li>Galaxy formation models rely on empirical rules </li></ul><ul><li>Star formation </li></ul><ul><li>Feedback </li></ul><ul><li>Good physical understanding of these is emerging </li></ul>Reionization at z=17: Can WMAP be correct? Jodrell Bank, October 2005
    43. 44. Formation of a Galaxy in G ALFORM <ul><li>Model predicts full dynamics of forming galaxy as a function of time </li></ul><ul><li>Model predicts full dynamics of forming galaxy as a function of time </li></ul><ul><li>Need a movie! </li></ul><ul><li>Stars </li></ul><ul><li>Model predicts full dynamics of forming galaxy as a function of time </li></ul><ul><li>Need a movie! </li></ul><ul><li>Stars </li></ul><ul><li>Dark matter </li></ul><ul><li>Model predicts full dynamics of forming galaxy as a function of time </li></ul><ul><li>Need a movie! </li></ul><ul><li>Stars </li></ul><ul><li>Dark matter </li></ul><ul><li>Full halo </li></ul><ul><li>Model predicts full dynamics of forming galaxy as a function of time </li></ul><ul><li>Need a movie! </li></ul><ul><li>Stars </li></ul><ul><li>Dark matter </li></ul><ul><li>Full halo </li></ul><ul><li>Zoomed region </li></ul><ul><li>Model predicts full dynamics of forming galaxy as a function of time </li></ul><ul><li>Need a movie! </li></ul><ul><li>Stars </li></ul><ul><li>Dark matter </li></ul><ul><li>Full halo </li></ul><ul><li>Zoomed region </li></ul><ul><li>Watch for growth of the galaxy </li></ul><ul><li>Small dark matter halos form first </li></ul><ul><li>Small dark matter halos form first </li></ul><ul><li>Merge to produce larger halos </li></ul><ul><li>Small dark matter halos form first </li></ul><ul><li>Merge to produce larger halos </li></ul><ul><li>Results in halos-within-halos </li></ul><ul><li>Process repeats </li></ul><ul><li>Small dark matter halos form first </li></ul><ul><li>Merge to produce larger halos </li></ul><ul><li>Results in halos-within-halos </li></ul><ul><li>Model predicts full dynamics of forming galaxy as a function of time </li></ul><ul><li>Need a movie! </li></ul>Reionization at z=17: Can WMAP be correct? Jodrell Bank, October 2005
    44. 45. Why do we need to do better? <ul><li>Tests of dark matter require knowledge of galaxy formation </li></ul><ul><li>Observational data sets are already way ahead of us, and getting better..... </li></ul><ul><li>Understanding galaxy formation would be really interesting! </li></ul><ul><li>Explaining data after the fact (fitting, interpretation...) </li></ul><ul><li>Explaining data after the fact (fitting, interpretation...) </li></ul><ul><li>Making predictions </li></ul>Sand, Treu & Ellis <ul><li>Tests of dark matter require knowledge of galaxy formation </li></ul><ul><li>Tests of dark matter require knowledge of galaxy formation </li></ul><ul><li>Observational data sets are already way ahead of us, and getting better..... </li></ul>Tangential arc Radial arc Elliptical galaxy Role of Theory Galaxy Formation for the Next Decade University of Pittsburgh, January 2005
    45. 46. Building the Luminosity Function <ul><li>How do we make the luminosity function of galaxies? </li></ul><ul><li>How do we make the luminosity function of galaxies? </li></ul><ul><li>Start simple and add physics.... </li></ul><ul><li>How do we make the luminosity function of galaxies? </li></ul><ul><li>Start simple and add physics.... </li></ul><ul><li>Dark matter </li></ul>Benson et al. (2003) Dark matter halo masses: luminosity ∝ mass Cole et al. (2001) <ul><li>How do we make the luminosity function of galaxies? </li></ul><ul><li>Start simple and add physics.... </li></ul><ul><li>Dark matter </li></ul><ul><li>Cooling </li></ul>Benson et al. (2003) G ALFORM <ul><li>How do we make the luminosity function of galaxies? </li></ul><ul><li>Start simple and add physics.... </li></ul><ul><li>Dark matter </li></ul><ul><li>Cooling </li></ul><ul><li>Merging & Jeans </li></ul>Benson et al. (2003) Benson et al. (2003) <ul><li>How do we make the luminosity function of galaxies? </li></ul><ul><li>Start simple and add physics.... </li></ul><ul><li>Dark matter </li></ul><ul><li>Cooling </li></ul><ul><li>Merging & Jeans </li></ul><ul><li>Feedback </li></ul><ul><li>How do we make the luminosity function of galaxies? </li></ul><ul><li>Start simple and add physics.... </li></ul><ul><li>Dark matter </li></ul><ul><li>Cooling </li></ul><ul><li>Merging & Jeans </li></ul><ul><li>Feedback </li></ul><ul><li>Conduction? </li></ul>Benson et al. (2003) <ul><li>How do we make the luminosity function of galaxies? </li></ul><ul><li>Start simple and add physics.... </li></ul><ul><li>Dark matter </li></ul><ul><li>Cooling </li></ul><ul><li>Merging & Jeans </li></ul><ul><li>Feedback </li></ul><ul><li>Conduction? </li></ul><ul><li>Superwinds? </li></ul>Benson et al. (2003) Galaxy Formation for the Next Decade University of Pittsburgh, January 2005
    46. 47. Global star formation history Dynamical time scaling Fixed timescale Baugh et al. 2005
    47. 48. Modelling dust extinction and emission <ul><li>Complete star formation history of galaxy, including starbursts triggered </li></ul><ul><li>by galaxy mergers. </li></ul><ul><li>2. Scale lengths of the disk and bulge components, calculated by conserving </li></ul><ul><li>angular momentum and applying conservation of energy. </li></ul>

    ×