• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Formas canonicas
 

Formas canonicas

on

  • 13,071 views

 

Statistics

Views

Total Views
13,071
Views on SlideShare
13,069
Embed Views
2

Actions

Likes
0
Downloads
72
Comments
0

1 Embed 2

http://www.slideshare.net 2

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Formas canonicas Formas canonicas Presentation Transcript

    • REPRESENTACIÓN DE FUNCIONES BOOLEANAS. Un sistema digital combinacional puede ser representado mediante una función booleana, y las salidas generadas por tal sistema pueden ser obtenidas creando la tabla de verdad de la función booleana. Sin embargo, en la práctica, resulta más común que se construya la tabla de verdad de todas las combinaciones posibles de las entradas del sistema y las salidas que se desea obtener en cada caso y a partir de esto generar la función booleana expresada en maxitérminos o minitérminos.
    • Formas Canónicas A partir de una tabla de verdad es posible obtener múltiples expresiones para la misma función, y todas estas expresiones son equivalentes entre ellas x y z S 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 1
    • Primera Forma Canónica La primera forma canónica está formada por la suma de productos (minitérminos) y se desarrolla tomando la tabla de verdad y eligiendo las combinaciones de entradas en las que la salida se hace 1 y descartando las que son igual a 0. x y z S 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 1 S = x’y’z + x’yz + xy’z’ + xy’z + xyz S(x,y,z)= ¦ (1,3,4,5,7)
    • Segunda Forma Canónica La segunda forma canónica está formada por el producto de sumas (maxitérminos) y se desarrolla tomando la tabla de verdad y eligiendo las combinaciones de entradas en las que la salida se hace 0 y descartando las que son igual a 1. x y z S 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 1 S = (x + y +z) (x + y’ +z) (x’ + y’ +z) S(x,y,z)= 3 (0,2,6)