In situ TiC formation Using Laser cladding

1,812 views
1,634 views

Published on

0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,812
On SlideShare
0
From Embeds
0
Number of Embeds
19
Actions
Shares
0
Downloads
69
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

In situ TiC formation Using Laser cladding

  1. 1. <ul><li>In-Situ TiC-Fe Deposition on Mild Steel Using Laser Cladding Process </li></ul><ul><li>Ali Emamian </li></ul><ul><li>Department of Mechanical and Mechatronics Engineering </li></ul><ul><li>November 18, 2009 </li></ul>
  2. 2. Contents <ul><li>Introduction </li></ul><ul><li>Motivation </li></ul><ul><li>Objectives </li></ul><ul><li>Experimental Approach and Procedure </li></ul><ul><li>Results and Discussion </li></ul><ul><li>Summary </li></ul><ul><li>Future Work </li></ul>
  3. 3. Matrix Hard particles Introduction Hard facing Methods Coating Heat Treatment Carburizing Composite coating Metal matrix Bronizing Ceramic coating
  4. 4. Laser cladding <ul><li>is a method that can be used to form metal matrix composite </li></ul><ul><li>Creates a small heat affected zone </li></ul><ul><li>Melts the powder and substrate </li></ul><ul><li>Mixture of powder can be pre-place (pre-place method) or fed by nozzle into the melt pool (dynamic blow method) </li></ul>Introduction
  5. 5. Laser cladding (dynamic blow) D P D L Introduction
  6. 6. Introduction Laser Cladding to produce composite coating In-Situ Process Direct Adding carbide (ex-situ)
  7. 7. <ul><li>What is “in-situ” laser cladding ? </li></ul><ul><li>Heating combined pure powders under a laser heat source generates chemical reaction which produces the desired metal matrix of ceramic reinforcement; </li></ul><ul><li>Fe+Ti+C Fe + TiC </li></ul>c Fe Ti Matrix (Fe) TiC Introduction
  8. 8. In-situ process advantages <ul><li>Particles are thermodynamically stable in the metal matrix </li></ul><ul><li>Reinforcing’ size can be controlled </li></ul><ul><li>Rapid solidification can produce finely dispersed ceramic particles </li></ul><ul><li>High metal/ceramic bond strength (i.e. matrix can transfer the applied stress, easily) </li></ul>Introduction
  9. 9. Why TiC? <ul><li>TiC has : </li></ul><ul><li>High melting point (3067 º C) </li></ul><ul><li>High Young Modules </li></ul><ul><li>High specific strength </li></ul><ul><li>High hardness (3000 HVN) 30% greater than WC </li></ul><ul><li>Low density (WC is almost 3 times heavier) </li></ul>Introduction
  10. 10. Literature review (ex-situ) <ul><li>Ariely, Laser surface alloying of steel with TiC (1991). </li></ul><ul><li>Tassin, Carbide-reinforced coatings on AISI 316 L stainless steel by laser surface alloying (1995). </li></ul><ul><li>Axén, Abrasive wear of TiC-steel composite clad layers on tool steel (1992). </li></ul><ul><li>Jiang, Laser deposited TiC/H13 tool steel composite coatings and their erosion resistance (2007). </li></ul><ul><li>Li, Micro structural characterization of laser-clad TiCp-reinforced Ni-Cr-B-Si-C composite coatings on steel (1999). </li></ul><ul><li>Wanliang, Microstructure of TiC dendrites reinforced titanium matrix composite layer by laser cladding (2003). </li></ul><ul><li>Hidouci, Microstructural and mechanical characteristics of laser coatings (2000). </li></ul><ul><li>Wu, Microstructure and mechanical properties at TiCp/Ni-alloy interfaces in laser-synthesized coatings (2001). </li></ul>Literature review
  11. 11. Literature review (In-situ) <ul><li>Cui, In situ TiC particles reinforced grey cast iron composite fabricated by laser cladding of Ni–Ti–C system (2007). </li></ul><ul><li>Wang, Microstructure and wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding (2008). </li></ul><ul><li>Yang, In-situ TiC reinforced composite coating produced by powder feeding laser cladding (2006). </li></ul><ul><li>Yan, In situ laser surface coating of TiC metal-matrix composite layer (1996). </li></ul><ul><li>Yang, S. Fabrication of in-situ synthesized TiC particles reinforced composite coating by powder feeding laser cladding (2005). </li></ul><ul><li>Wu, X. In situ formation by laser cladding of a TiC composite coating with a gradient distribution (1999). </li></ul><ul><li>Yang1, In-situ TiC reinforced composite coating produced by powder feeding laser cladding (2006). </li></ul><ul><li>Wang, In situ synthesized TiC particles reinforced Fe based composite coating produced by laser cladding (2009). </li></ul>Literature review
  12. 12. <ul><li>Have mostly focused on pre-place method </li></ul><ul><li>Mainly used Ni or Co alloys as a binder </li></ul><ul><li>Did not explain TiC formation mechanism </li></ul><ul><li>Did not investigate the relationship between clad microstructure and laser processing condition </li></ul><ul><li>Produced carbides which are combination of Ni, Fe, Co, Cr, B or Si. Variety of carbides other than TiC are produced in a complex solidification process </li></ul>Motivation Motivation
  13. 13. Objective <ul><li>To form in-situ TiC in Fe matrix </li></ul><ul><li>To form high quality clad (complete metallurgical bonding between clad and substrate without porosity and crack) </li></ul>Substrate Clad
  14. 14. Milestones <ul><li>To fully understand the effects of processing parameters on clad characteristics </li></ul><ul><li>To determine the Fe-TiC clad microstructure from laser processing parameters </li></ul><ul><li>To determine an optimum cladding condition to produce a high performance Fe-TiC </li></ul><ul><li>To evaluate hardness and wear resistance in relation to the clad processing condition </li></ul>Objectives
  15. 15. <ul><li>Experimental set up </li></ul><ul><li>Chemical composition of powder: 24.9 wt% Ti, 5.1 wt% C, 70 wt% Fe </li></ul><ul><li>Powders’ size: maximum 0.04 mm </li></ul><ul><li>Laser: Fiber Laser (1.1kW) iPG </li></ul><ul><li>Diameter of laser beam: fixed at 2.5 mm </li></ul><ul><li>Deposition method: Dynamic Blow </li></ul><ul><li>Substrate: AISI 1030 (Carbon Steel) </li></ul>Experimental approach
  16. 16. Ti/C ratio Experimental approach
  17. 17. No bond or clad Clad-No bond Clad with partial bond High quality Clad Results and discussion Table of Results No Power W Scan speed mm/s Feed rate g/min 1 250 2 8 2 250 4 8 3 250 6 8 4 400 2 8 5 400 4 8 6 400 6 8 7 650 2 8 8 650 4 8 9 650 6 8 10 650 8 8 11 650 10 8 12 650 12 8 13 650 16 8 No Power W Scan speed mm/s Feed rate g/min 14 700 6 8 15 700 6 4 16 800 6 8 17 800 6 4 18 800 2 8 19 800 3 8 20 800 4 4 21 900 6 8 22 900 8 8 23 900 6 4 24 900 8 4 25 900 4 4 26 1000 4 4
  18. 18. Results and discussion
  19. 19. High quality limit
  20. 20. Un-bonded clad microstructure Fe Matrix TiC Cross section Results and discussion
  21. 21. Un-bonded clad Results and discussion Region Ti conc. (wt%) Fe conc. (wt%) Dark grey particles 95.2 4.8 Region 1 8.7 91.3 Region 2 16.5 83.5
  22. 22. Bonded clad Microstructure Fe Matrix TiC Results and discussion
  23. 23. Bonded clad Graphite C TiC Longitudinal section Results and discussion
  24. 24. Results and discussion
  25. 25. Clad Substrate Results and discussion
  26. 26. Increasing the scan speed 2 mm/sec 12 mm/sec 10 mm/sec 8 mm/sec 6 mm/sec 4 mm/sec Clad Bottom Clad Bottom Clad Bottom Clad Bottom Clad Bottom Clad Bottom Laser power 900 Powder feed rate 4g/min Results and discussion
  27. 27. 2 mm/sec Increasing the scan speed Clad Top 4 mm/sec 6 mm/sec 8 mm/sec 12 mm/sec 10 mm/sec Clad Top Clad Top Clad Top Clad Top Clad Top Results and discussion Laser power 900 Powder feed rate 4g/min
  28. 28. Ternary phase diagram 2200C 2400C Results and discussion
  29. 29. TiC formation <ul><li>Fe powders melt </li></ul><ul><li>Ti and C dissolve in Fe </li></ul><ul><li>Ti and C react to form TiC layer </li></ul>Results and discussion TiC C Material Fe Ti C Melting point °C 1538 1668 3400
  30. 30. Fe Ti C C Ti Increasing the temperature TiC Results and discussion
  31. 31. Summary <ul><li>In-Situ TiC has been formed during the laser cladding process </li></ul><ul><li>It was shown that TiC morphology can be controlled by effective energy and powder deposition density </li></ul><ul><li>A map to predict the clad quality based on process parameters has been developed </li></ul>
  32. 32. Future work <ul><li>Complete understanding of in-situ Fe-TiC coating , laser process parameters, microstructure and surface properties relationship </li></ul><ul><li>Process Control </li></ul><ul><li>Optimization the powder composition </li></ul><ul><li>Investigation of wear resistance behaviour </li></ul>Future work
  33. 33. Future work Process control TiC morphology and microstructure Wear behaviour study Future work
  34. 34. Process control High quality bonding and clad area Different microstructure and TiC morphology Different scan speed 1 2 3 4 Future work
  35. 35. Wear investigation 1 2 3 4 n Wear test machine Investigation of surface, wear modes Future work Comparison of wear behaviour of different TiC morphology Process control
  36. 36. Powder composition optimization Now 70%Fe Ti- 45 %at C Future work 70%Fe Ti- 50 % at C Future work 70%Fe Ti- 55 % at C Graphite formation (self lubrication ) Ti+ C = TiC Future work
  37. 37. Fe Ti C 70%Fe Ti-55%C Ti-50%C Ti-45%C
  38. 38. Fe percentage decreasing Ti Fe C 70 60 50% Fe 50%C 55%C Optimize the Ti:C ratio Fe+C+TiC
  39. 39. Future work <ul><li>Process optimization </li></ul><ul><li>Microstructure characterization </li></ul><ul><li>Wear behaviour investigation </li></ul>Future work
  40. 40. Time table Future work Activity Winter 2010 Spring 2010 Fall 2010 Winter 2011 Spring 2011 Fall 2011 Winter 2012 Investigation on optimum process parameters Investigation on optimum compositions TiC phase formation and morphology analyses Wear resistance investigation and analysis-Process modification Thesis writing Defence
  41. 41. Thanks
  42. 42.
  43. 43.
  44. 44. Y=ax+b
  45. 45. 1400 C
  46. 46. Y=ax+b
  47. 47. 1000 C
  48. 48.
  49. 49.
  50. 50.
  51. 51.
  52. 52.
  53. 53.
  54. 54.
  55. 55. Laser Power Increasing
  56. 56. In situ formation by laser beam <ul><li>Methods: </li></ul><ul><li>Pre place </li></ul>Dynamic blowing
  57. 57. Future work Fe( γ )+ G+TiC

×