NoSQL: Datenhaltung Gangnam Style (BigData-Seminar)
 

NoSQL: Datenhaltung Gangnam Style (BigData-Seminar)

on

  • 1,846 views

NoSQL etabliert sich als ernstzunehmende Alternative zu relationalen Datenbanken. Doch wo steht die Technologie heute und wo geht die Reise hin? Lernen Sie die verschiedenen Klassen von ...

NoSQL etabliert sich als ernstzunehmende Alternative zu relationalen Datenbanken. Doch wo steht die Technologie heute und wo geht die Reise hin? Lernen Sie die verschiedenen Klassen von NoSQL-Datenbanken und ihre Einsatzmöglichkeiten kennen. Außerdem schlage ich den Bogen dazu, wie sich die alte und die neue Datenbank-Welt in Zukunft (wieder) verbinden.

Statistics

Views

Total Views
1,846
Views on SlideShare
1,845
Embed Views
1

Actions

Likes
2
Downloads
37
Comments
1

1 Embed 1

http://www.linkedin.com 1

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel

11 of 1

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
  • good for me to understand Nosql. Btw, Gangman Style in the title comes from the song of Psy?
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment
  • 1970 Grundlagen der relationalenDatenbanken (SystemR, Vorgänger von DB2 und Oracle)2009 Der BegriffNoSQLtauchterstmals auf2006 Entstehung der klassischenNoSQL-Systeme (Hbase/Hypertable, CouchDB, Cassandra, Voldemort, Dynamo/Dynomite, MongoDB, Redis, Riak)2000 Entstehung des Web 2.0 mit der AnforderunggroßeDatenmengenzuverarbeiten (Google’s BigTable)1979 Geschichte der NoSQL-Systemebeginnt (DBM, LotusNotes, BerkeleyDB, GT.M)NoSQListkeinmoderner Hype / NoSQLkann auf einenlangenEntwicklungshistoriezurückschauenName ist Marketing
  • Standardisierung – Technologie, Daten Produkte sind ausgereift, haben reichhaltigen FunktionsumfangInvestitionen
  • SQL – Aufwandfür INSERT und QUERY – WelcheAntwortenkannichgeben? WRITE Many – READ ManyNoSQL – Aufwandfür QUERY – WelcheFragestellungenhabeich? WRITE Once – READ Many
  • CAP describesthe three fundamental characteristics of a distributed computing systemCAP is a is useful in understanding the behavior of a distributed system
  • Quorum
  • Consistent Hashing Vector ClocksPaxos
  • Advantages:Compression, all rows indexed
  • SQL will remain the single most import data persistence technologyNoSQL offers choice (especially in the context of big data)
  • SQL ->Innovation,Integration,AcquisitionNoSQL -> GeneralisierungSQL Server 2014 – Columnstore Indexes, In-Memory Database, Polybase, DaytonaCloudera Impala – SQL-on-HadoopMongoDB, RavenDB – LINQ-style queries

NoSQL: Datenhaltung Gangnam Style (BigData-Seminar) NoSQL: Datenhaltung Gangnam Style (BigData-Seminar) Presentation Transcript

  • NoSQL Datenhaltung Gangnam Style Dr. Stephan Volmer December 23, 2013
  • Market Big Data Technology
  • big data distributed schema-free relaxed consistency open source non-relational simple interface semi-structured data eventually consistent easy replication
  • XML Databases Multi-Model Databases Object Databases Column Family Stores Graph Databases Key Value Stores Triple Stores Document Databases Wide Column Stores Multi-Value Databases Grid & Cloud Database Solutions
  • Parstream Vertica Cloudera HBase sones Memcached Chordless Voldemort Jena Riak BerkeleyDB LevelDB MongoDB OrientDB Keyspace InfiniteGraph HyperGraphDB Terracotta FlockDB CouchDB Redis Hadoop Cassandra RavenDB Membase BigTable InfoGrid SimpleDB Dynamo Azure Table Storage Aster Data HyperTable Neo4j Scalaris Tokyo Cabinet BrightstarDB
  • Themenschwerpunkte •Retroperspektive •Definition •Verteilte Systeme •Skalierungsmodelle •Datenmodelle •Fazit
  • Retroperspektive •Etymologie •Definition •Geschichte
  • Etymologie Eric Evans Software Architect The OpenNMS Group Debian Developer Cassandra Committer NoSQL | Dr. Stephan Volmer 2. July 2013 Slide 8 © Zühlke 2013
  • Definition NoSQL | Dr. Stephan Volmer 2. July 2013 Slide 9 © Zühlke 2013
  • Geschichte 1970 1980 1990 2000 2010 SQL NoSQL NoSQL | Dr. Stephan Volmer 2. July 2013 Slide 10 © Zühlke 2013
  • Definition
  • Was haben relationale Datenbanken so populär gemacht? Standards Garantien Mehrwert Investitionen
  • Was sind heute die größten Herausforderungen für relationale Datenbanken? Daten! Volume Velocity Variety
  • Scale-Up Consistency ACID Scale-Out Scalabilty BASE
  • Garantien ACID BASE •Atomicity •Basically •Consistency •Soft •Isolation •Eventually Available State Consistent •Durable Haerder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM Computing Surveys 15 (4): 287–317, December 1983. NoSQL | Dr. Stephan Volmer Vogels, W.: Eventually consistent. All Things Distributed Blog, December 2007. Available from http://www.allthingsdistributed.com/ 2007/12/eventually_consistent.html 2. July 2013 Slide 15 © Zühlke 2013
  • Neue Generation von Datenbanken • Horizontal scalability • Non-relational • Relaxed data model consistency model • Semi-structured data • Simple data replication • Simple interface • Open NoSQL | Dr. Stephan Volmer source 2. July 2013 Slide 16 © Zühlke 2013
  • Verteilte Systeme •CAP Theorem
  • CAP Theorem Consistency C A Availability P Partition Tolerance NoSQL | Dr. Stephan Volmer 2. July 2013 Slide 18 © Zühlke 2013
  • CAP Theorem C A P NoSQL | Dr. Stephan Volmer 2. July 2013 Slide 19 © Zühlke 2013
  • Ein verteiltes System kann zwei beliebige dieser Eigenschaften gleichzeitig garantieren, jedoch nicht alle drei!
  • CAP Theorem SQL SQLite Postgres MySQL H2 Oracle DB2 SQL Server C C Sybase NoSQL A Aster Data NoSQL | Dr. Stephan Volmer Greenplum Vertica P P A 2. July 2013 Slide 21 © Zühlke 2013
  • CAP Theorem C P BigTable MongoDB BerkeleyDB NoSQL HyperTable TerraStore HBase Scalaris A P MemcacheDB Redis A NoSQL | Dr. Stephan Volmer 2. July 2013 Slide 22 © Zühlke 2013
  • CAP Theorem A P Dynamo SimpleDB NoSQL Voldemort Tokyo Cabinet Cassandra C A CouchDB Riak C NoSQL | Dr. Stephan Volmer 2. July 2013 Slide 23 © Zühlke 2013
  • Skalierungsmodelle •Single Server / Server Cluster •Sharding •Master-Slave Replication •Peer-to-Peer Replication •Hybrid Sharding & Replication
  • Single Server / Server Cluster NoSQL | Dr. Stephan Volmer 2. July 2013 Slide 25 © Zühlke 2013
  • Sharding NoSQL | Dr. Stephan Volmer 2. July 2013 Slide 26 © Zühlke 2013
  • Master-Slave Replication Master Slaves NoSQL | Dr. Stephan Volmer 2. July 2013 Slide 27 © Zühlke 2013
  • Peer-to-Peer Replication Peers NoSQL | Dr. Stephan Volmer 2. July 2013 Slide 28 © Zühlke 2013
  • Hybrid Sharding & Replication Peers NoSQL | Dr. Stephan Volmer 2. July 2013 Slide 29 © Zühlke 2013
  • Datenmodelle •Key / Value Stores •Document Stores •Column Index Stores •Column Family Stores •Triple •Graph Stores Databases
  • Konventionelle, relationale Datenbanken ID : 1 Name : Michael Age: 42 Index 1 2 3 NoSQL | Dr. Stephan Volmer ID : 3 Name : Joe Age: 28 ID : 2 Name : Christopher Age: 36 Person Id Name Age 1 Michael 42 3 Christopher 36 2 Joe 28 2. July 2013 Slide 31 © Zühlke 2013
  • Key / Value Stores ID : 1 Name : Michael Age: 42 ID : 3 Name : Joe Age: 28 Person Key Value 64ca4238 TWljaGFlbCwgNDI= c81e728d Q2hyaXN0b3BoZXIsIDM2 eccbc87e ID : 2 Name : Christopher Age: 36 Sm9lLCAyOA== NoSQL | Dr. Stephan Volmer 2. July 2013 Slide 32 © Zühlke 2013
  • Document Stores ID : 1 Name : Michael Age: 42 ID : 3 Name : Joe Age: 28 ID : 2 Name : Christopher Age: 36 Person Key Value 64ca4238 { “ID”:”1”, “Name”:”Michael”, “Age”:”42” } c81e728d { “ID”:”3”, “Name”:”Joe”, “Age”:”28” } eccbc87e { “ID”:”2”, “Name”:”Christopher”, “Age”:”36” } NoSQL | Dr. Stephan Volmer 2. July 2013 Slide 33 © Zühlke 2013
  • Column Index Stores ID : 1 Name : Michael Age: 42 ID : 3 Name : Joe Age: 28 ID : 2 Name : Christopher Age: 36 Person Id 1 2 3 3 2 Name Christopher Michael Joe Michael Christopher Age 28 42 36 28 42 36 NoSQL | Dr. Stephan Volmer 2. July 2013 Slide 34 © Zühlke 2013
  • Column Family Stores Keyspace Games Players Goose RedBird Apollo Matches Column Families Column Name:Michael, Age:42 Name:Christopher Name:Joe, Age:28, Level:Ace Super Column tetris NoSQL | Dr. Stephan Volmer 2010-05-20 15:10:23 Player1:Goose, Player2:Apollo, Winner:2 2010-05-23 17:37:59 chess Player1:Apollo, State:SGVsbG8gV29yb… Player:RedBird, Score:8756 2. July 2013 Slide 35 © Zühlke 2013
  • Fazit
  • NoSQL is not about any one feature of any of the projects. NoSQL is not about scaling, NoSQL is not about performance, NoSQL is not about hating SQL, NoSQL is not about ease of use, NoSQL is not about sharding, NoSQL is not about throughput, NoSQL is not about speed, NoSQL is not about dropping ACID, NoSQL is not about Eventual Consistency, NoSQL is not about CAP, NoSQL is not about open standards, NoSQL is not about Open Source and NoSQL is most likely not about whatever else you want NoSQL to be about. NoSQL is about choice! Jan Lehnardt, CouchDB To SQL or to NoSQL? Das ist nicht die Frage!
  • Die Zukunft gehört Polyglot Persistence!
  • SQL- & NoSQL-Technologien werden zukünftig konvergieren!
  • “Know your battlefield, pick your battles!” Replication Consistency Configuration Security Installation Scalabilty Client Access
  • Dr. Stephan Volmer Lead Software Architect Telefon Email Twitter Xing +49 6196 7775 4380 stephan.volmer@zuehlke.com @stvzeg http://xing.to/stv