Conversion of Jatropha Curcas Oil into BioDiesel

  • 573 views
Uploaded on

Conversion of Jatropha Curcas Oil into BioDiesel …

Conversion of Jatropha Curcas Oil into BioDiesel

More in: Design , Technology , Business
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
573
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
30
Comments
0
Likes
1

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Conversion of Jatropha Curcas Oil Martin Mittelbach martin.mittelbach@uni-graz.at Institute of Chemistry (IFC) Department of Renewable Resources University of Graz A-8010 Graz AustriaInternational Conference on Jatropha curcas Groningen, the Netherlands, November 1-2 M.Mittelbach, AGQM-HEC-Meeting M.Mittelbach, ICJC 2010 M.Mittelbach, BIOTOP Workshop September 25, 2009, 2010, Brussels November 1-2, 2010, Groningen,Chile September 27-28, Valparaíso, NL
  • 2. Biofuels Activities of IFC, Uni GrazDepartment of Renewable Resources• Development of biodiesel process technologies• Alternative feedstocks for biodiesel production• Alternative uses for biodiesel and side products• Research on analysis and characterization of fats and oil derivatives• Development of specifications• Training and seminars on biodiesel analysis and quality management• Research on second generation biofuels: BTL, biomethanol, lignocellulosic biodiesel
  • 3. 1986: Mittelbach, Junek, Andreae: AT 386.222 M.Mittelbach; Lublijana, May 20, 2008 3
  • 4. IFC: Over 20 Years Experience in Biodiesel 1987: 1st pilot plant worldwide for Biodiesel Plant Amsterdam, 100.000 t/aBiodiesel: Silberberg, Styria, Austria BDI, Austria Feedstocks: Trap grease, UCO, PFAD Put into operation: 2010
  • 5. Symposium on Biofuel and Industrial Products from Jatropha curcas and other Tropical Oil Seed Plants Managua / Nicaragua 23 - 27 February 1997 M.Mittelbach, ICJC 2010November 1-2, 2010, Groningen, NL
  • 6. Biomass Project within an AustrianDevelopment Help Project in Nicaragua1990 – 2000Evaluation of Jatropha curcas L. as energy plantCultivation of 1.000 ha„The biofuel part, however, suffers from the development of fossil fuel prices, which makes the production of diesel from physic nut uneconomical at the moment.“ M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 7. Publications on Jatropha Source: SciFinder400350300250200150100 50 0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 8. 10 /0 0 200 400 600 800 1000 1200 1400 1600 1800 2 2/ 03 6/ 0 10 3 /0 3 2/ 04 6/ 0 10 4 /0 4 2/ 05 6/ 0 10 5 /0 02 5 /0 06 6 /0 Gas Oil Palm Oil 10 6 /0 02 6 /0 Soybean Oil 04 7 Rapeseed Oil /0 06 7 /0 08 7 /0 10 7 /0 12 7 /0 02 7 /0 M.Mittelbach, ICJC 2010 04 8 /0 06 8 /0November 1-2, 2010, Groningen, NL 08 8 /0 10 8 /0 12 8 /0 02 8 /0 04 9 /0 06 9 /0 08 9 /0 10 9 /0 12 9 /0 02 9 /1 04 0 /1 06 0 /1 0 Price Development of Vegetable Oils and Gasoil in US $/t
  • 9. Oil Characteristics of Jatropha Curcas L. Free Fatty Acids [%m/m] 2-15 Solvent extracted: 6.9 Cold pressed: 5.3 Iodine Number 95 - 107 Linoleic Acid [%m/m] 19 – 41 Phosphorus [mg/kg] Solvent extracted: 88 Cold pressed: 36 Phorbol Ester Content [mg/kg] 100 - 3800 Source: Makkar et al., Mittelbach et al. M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 10. Fatty Acid Distribution of Non Edible Oils C-16:0 C-18:0 C-18:1 C-18:2 C-18:3 Others Iodine NrRape seed 3-5 1-2 55-65 20-26 8-10 96-117Jatropha 12-17 5-10 37-63 19-41 1-2 93-107curcasPongamia 3-8 2-9 44-71 10-18 15-20 80-96pinnataRubber seed 7-8 9-10 28-30 33-35 20-21 121- 145Sal 5-9 34-48 34-45 2-3 6-12 33-45Castor 1-2 1-2 3-4 5-6 0.5-1 87-88 82-90Tobacco seed 11 3.5 14.5 69.5 136- 146 M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 11. Biodiesel from Oil of Jatropha Curcas L. FAME fromFuel Parameter Rape Seed Jatropha curcasCetane Number 49 - 62 51 – 59CFPP [° C] -19 - -8 -3Iodine Number 104 - 120 95 - 107Oxidation Stability [h] 7 3 M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 12. CFPP of B100 vs. Saturated Fatty Acids 15 Jatropha C] CFPP [° 10 5 typical range of 0 BioDiesel derived from Animal Fat -5 typical range of BioDiesel derived from -10 Used Cooking Oil typical range of -15 BioDiesel derived from Rapeseed Oil -20 0 5 10 15 20 25 30 35 40 45 50 Content of Saturated Fatty Acid Chains [wt.%] Source: BDI M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 13. Toxic Principles of Jatropha Curcas L.Phorbol esters: mainly in the oil; esters of tigliane diterpenes tumor promotion, cell proliferation, activation of blood platelets, lymphocyte mitogenesis, inflammationCurcin: mainly in the oil cake; Ribosome-inactivating proteinNon-toxic varieties found in Mexico M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 14. DHPB: Hirota et al. 1998 15 14 13 23 21 19 17 6 12 524 22 20 16 4 18 1 2 3 8 O 7 9 10 18 O 12 HO 11 13 17 1 H 14 15 O 11 O 19 9 16 2 10 8 H 3 4 H 7 O HO 5 6 20 OH M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 15. Novel Class of Cyclobutan Mojety W.Haas, H.Sterk, M.Mittelbach: J. Nat. Prod. 2002 M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 16. VWD1 A, Wavelength=280 nm (A060508081-0101.D)mAU 7 HPLC: 6 Phorbol esters 5 4 Toxic variety 3 2 1 0 0 2 4 6 8 10 min VWD1 A, Wavelength=280 nm (A060508082-0201.D)mAU 4 3.5 3 2.5 Non toxic 1.5 2 variety 1 0.5 0 0 2 4 6 8 10 min M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 17. VWD1 A, Wavelength=280 nm (A060508081-0101.D)mAU 7 HPLC: 6 Phorbol esters 5 4 Oil: 3 2 1 Toxic variety 0 0 2 4 6 8 10 min VWD1 A, Wavelength=280 nm (A050608072-0101.D)mAU -2 -4 Methyl Ester: -6 -8 After trans- esterification -10 0 2 4 6 8 10 min M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 18. Source: www.jatropha.de M.Mittelbach, Bogor 2008 M.Mittelbach, Eco Asia Conference October 28, 2008, Hong Kong
  • 19. Jatropha curcas Plantation,Tierra Caliente, Mexico, 2/2010 Age: 3 years, with Irrigation M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 20. Jatropha curcas Plantation,Tierra Caliente, Mexico, 2/2010Age: 3 years, without Irrigation M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 21. 21 Jatropha Curcas Oil Samples from Mexico BIOTOP-Project, Student Exchange, July 2010 T+- T- T-T+ T++ T+- T+,T- M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 22. FAEE Biodiesel Fuels Oleochemicals Specialities Sulpho-FAME FAME FA-Ethoxylates FA-Sulfates Fatty APGOils Alcohols Technical Esters & Fatty Alkyl chlorides AcidsFats Soaps Dimer acids FA esters Glycerine Chemicals M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 23. Alcoholysis of TriglyceridesCH 2 O COR 1 CH 2 O COR 1 CH 3 OH CH 3 OHCH O COR 2 CH O COR 2 + R3 COOCH 3CH 2 O COR 3 CH 2 OH Triglyceride DiglycerideCH 2 O COR 1 CH 2 OH CH 3 OHCH OH + R2 COOCH 3 CH OH + R1 COOCH 3CH 2 OH CH 2 OHMonoglyceride Glycerol M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 24. Transesterification with Alkylacetate 3 CH 3COOR 1 3Triglyceride Methyl-(ethyl-)acetate Triacetine FAME Catalysts: KOH, lipases: M.Mittelbach et al., 1995, 2000, unpublished supercritical conditions: Saka et al., 2009 M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 25. Transesterification with Dimethylcarbonate CH3OH + CO +O2 Cu 1) CH3O- 3 2) supercritical Triglyceride Dimethylcarbonate Glycerolcarbonate FAME 1) Fabbri et al., 2007 2) S.Saka et al., 2009 M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 26. Most Promising TechnologiesR.Altman, www.caafi.org, 2009 M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 27. New Biofuels as Diesel FuelBTL (Biomass to Liquid): Gasification and FT-synthesisHydrotreated vegetable oils (HVO): Direct hydrotreating of fats and oils in refineries; integrated or stand aloneThermochemical liquefaction of biomass: pyrolysis, hydrothermal upgrading (HTU) M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 28. Hydrotreated vegetable oils (HVO) Make-up Hydrogen Source: Acid Gas CO2Reactor Removal T.L.Marker et al., UOP, 2007 Propane & Light Ends Separator Naphtha or Jet Similar Technologies: Water Neste Oil: NExBTL Axens Diesel Product M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 29. Hydrotreated vegetable oils (HVO) n H2 3 R - CH3 + 6 H2O + H3C - CH2 - CH3 Hydroisomerization Branched hydrocarbons M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 30. FAME as Renewable Resources, 1 R-COOCH 3 R = fatty acid chain CH 2OH CH 3CH 2 C CH 2OH CH 2OH Trimethylolpropan CH 2OCOR LubricantsCH 3CH 2 C CH 2OCOR Hydraulic fluids CH 2OCOR M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 31. FAME as Renewable Resources, 2 R-COOCH3 R = fatty acid chain HO 2-Ethylhexanol Lubricants RCOO Cutting fluidsFatty acid-2-ethylhexanoate M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 32. FAME as Renewable Resources, 3 R-COOCH 3 R = fatty acid chain O nR - COO - (CH 2 - CH 2 - O) n- CH 3 FAME-ethoxylates Nonionic Detergents M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 33. FAME as Renewable Resources 4: Liposaccharides R-COOCH3 R = fatty acid chain HOCH2 O saccharose HOCH2 O HO HO HO OH O CH2OH HO XO O XOCH2 O XO KOH/MeOH XO XO OX O CH2OX FAMEX = COR XO glucose Octaacylsaccharose "Olestra" M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 34. Ozonolysis of Oleic Acid (CH 2)n COOH n=7: Oleic acid Ölsäure 1) O3 2) H2O2 n=11: Erucasäure COOH HOOC (CH 2)n COOHPelargonsäurePelargonic acid n=7: Azelainsäure Azelaic acid n=11: Tridecandisäure Tridecanediacid M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 35. Epoxidation of OlefinsHC CH HC CH + HX O OH X HX End product H2 Alcohol H2O Diol ROH Ether alcohol RCOOH Hydroxyester R2NH Aminoalcohol HCl Chlorhydrin M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 36. Self Metathesis of Fatty Acid Esters (CH 2)n COOR WCl6-SnMe4 (CH2)n COOR n=7: Ölsäureester n = 7: Oleic acid n=11: Erucasäureester (CH 2)n COOR (CH 2)n COOR M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 37. Co Metathesis with Ethene (CH2)n COOR n=7: Ölsäureester n=11: Erucasäureester CH2 CH2 (CH2)n COOR M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 38. Conclusions• Jatropha curcas oil has similar chemical composition as major vegetable oils• So Jatropha oil is an ideal substitute for food oils in all oleochemical routes• However, the content of toxic phorbol esters could limit the technical applications and utilizations• The price range for the oil will be between palm oil and rape seed oil• The utilization of phorbol esters could give an added value• Still the most important use for Jatropha oil will be the biofuel market• Full LCA for Jatropha oil has to be carried out in order to evaluate the potential in the biofuel market M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL
  • 39. WG NAWARO M.Mittelbach, ICJC 2010November 1-2, 2010, Groningen, NL
  • 40. Thank You for Your Kind Attention! M.Mittelbach, ICJC 2010 November 1-2, 2010, Groningen, NL