• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
CDIO Project: Reingegnerizzare Ingegneria
 

CDIO Project: Reingegnerizzare Ingegneria

on

  • 2,146 views

L’Industria e la Società richiedono una nuova specie di Ingegnere che abbia conoscenze disciplinari integrate con competenze personali, interpersonali e capacità sperimentate di Conceive/Ideare ...

L’Industria e la Società richiedono una nuova specie di Ingegnere che abbia conoscenze disciplinari integrate con competenze personali, interpersonali e capacità sperimentate di Conceive/Ideare –Design/Progettare – Implement/Implementare – Operate/Operare (CDIO) prodotti e sistemi ingegneristici a valore-aggiunto, in organizzazioni basate su gruppi di lavoro.

Statistics

Views

Total Views
2,146
Views on SlideShare
2,131
Embed Views
15

Actions

Likes
1
Downloads
15
Comments
0

4 Embeds 15

http://lacivetta.wordpress.com 11
http://www.slideshare.net 2
http://www.linkedin.com 1
https://www.linkedin.com 1

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel

CDIO Project: Reingegnerizzare Ingegneria CDIO Project: Reingegnerizzare Ingegneria Presentation Transcript

  • Re-ingegnerizzare Ingegneria CDIO Project Claudio G. Casati Agosto 2009 (Rev. Ott09)
  • Executive Summary L’Industria e la Società richiedono una nuova specie di Ingegnere che abbia conoscenze disciplinari integrate con competenze personali, interpersonali e capacità pratiche di sviluppo prodotti e sistemi ingegneristici. Much of the current view of what constitutes engineering funda- mentals was shaped by what is commonly termed the “engineering science revolution”. The intended consequence was to offer students a rigorous, scientific foundation that would equip them to address unknown future technical challenges: this was good. The unintended consequence was a cultural shift in engineering pedagogy that substantially diminished the perceived value of industry-experienced key skills and attitudes that had previously been the hallmark of engineering education: this was not good. The CDIO™ Initiative is an innovative educational framework for producing the next generation of engineers. It provides students with an education stressing engineering fundamentals set in the context of Conceiving - Designing - Implementing - Operating real- world systems and products (www.cdio.org). 2
  • Citazione Questa presentazione è un assemblaggio di materiali tratti da: CDIO “Ready to Engineer” at graduation, ASME 2009 Engineering Education:Challenges and Strategies, Research Center for Science, Technology & Education Policy, Zhejiang University,China, 2009 Progetto DIAlumni, Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, 2009 CDIO - Integrating engineering competencies in engineering education, Kristina Edström, KTH, October 21, 2008 Convegno “Le imprese cercano, gli ingegneri ci sono? Domanda e offerta a confronto nel panorama europeo” Assolombarda e Politecnico di Milano, 24 gennaio 2008 SP1: System Requirements and Teamwork, Unified Engineering Spring 2004, Charles P Coleman, MIT The CDIO Syllabus, A Statement of Goals for Undergraduate Engineering Education, Edward F. Crawley, Department of Aeronautics and Astronautics, MIT, 2001 3
  • Contenuti L’Industria richiede una nuova specie di Ingegnere La situazione italiana CDIO Initiative 4
  • Le funzioni essenziali di un Ingegnere Gli ingegneri laureati dovrebbero avere le capacità di ideare–progettare–implementare–operare ideare–progettare–implementare– complessi sistemi ingegneristici a valore-aggiunto, in moderni ambienti valore-aggiunto, basati-su- basati-su-team. 5
  • L’Industria e la Società richiedono una nuova specie di Ingegnere
  • Problemi attuali The goal of Engineering Education is making scientists but not engineers. Engineering Education is lack of practices, which is the soul of engineering Engineer qualification system is not fully established 7
  • La sfida: formare Talenti Ingegneristici per le Industrie del con un futuro High-tech and new Research work technology are booming (knowledge production) day by day. It shortens the is playing an important period of role more than ever before. commercialization. esplicit knowledge vs tacit Nanoscience & knowledge Nanotechnology arts & science vs Life Science & Engineering professions Material Science & Disciplines infiltrate into Engineering each other and are CIT & Information System obviously influenced by Manufacturing Engineering the development of & System technology. 8
  • Engineering Science Revolution Much of our current view of what constitutes engineering fundamentals was shaped by what is commonly termed the “engineering science revolution”, which was spawned by the technology needs during and immediately following World War II and later promoted by the infusion of massive government funding for university research. In the so‐called Golden Age of the 1950’s and 60’s, engineering was taught by a balance of older industry‐experienced faculty and the new, younger research faculty. Through the ensuing decades, the industry‐experienced faculty retired and were replaced by researchers to form the Research University. Thus the pendulum of engineering pedagogy swung from a practice‐based curriculum to an engineering science‐based model. Engineering faculty moved from teachers who had real, working engineering experience to faculty engaged almost totally in research and having no practical engineering experience. 9
  • Ripensare la Formazione Ingegneristica The intended consequence of the “engineering science revolution” was to offer students a rigorous, scientific foundation that would equip them to address unknown future technical challenges. This was good. The unintended consequence was a cultural shift in engineering pedagogy that substantially diminished the perceived value of key skills and attitudes that had previously been the hallmark of engineering education. This was not good. Today, this shift has resulted in tension created by the difference of opinion with respect to outcomes between engineering educators and the broader engineering community that ultimately employs engineering graduates. Dr. Charles Vest, current president of the US National Academy of Engineering (NAE), summarized the situation very well in his support of CDIO: “Along the way, something got lost. We need to rethink engineering education and find a new balance”. 10
  • Le Industrie necessitano di una nuova specie di ingegnere ... Present focus Desired focus Context: Context: product and system Engineering science development (products and Reduced, “pure” systems in a wide sense) problems Systems view, problems go (with right and across disciplines, are wrong answers) complex and ill-defined, and Design phase contain societal and business aspects Individual effort Understand the whole cycle: Conceive, Design, Implement, Operate Teamwork, communication 11
  • Boeing List of “Desired Attributes of an Engineer” A good understanding of Good communication skills engineering science Written & Oral fundamentals Graphic Mathematics & statistics Listening Physical & life sciences High ethical standards Information technology An ability to think both A good understanding of design critically and creatively - & manufacturing processes independently & (i.e. understands engineering) cooperatively A multi-disciplinary, systems Flexibility. The ability and perspective self-confidence to adapt to A basic understanding of the rapid or major change context in which engineering is Curiosity & a desire to learn practiced for life Economics & business A profound understanding of practice the importance of teamwork History Global awareness The environment (one more foreign language Customer and societal needs other than English) 12
  • Rinnovare la Formazione Ingegneristica Return to engineering practice ! •• Pratica (Learning Pratica (Learning Face real problems in by doing) by doing) the real world ! •• Integrazione Integrazione Break barriers between disciplinare disciplinare disciplines ! ((IntegratedCourse Integrated Course Block) Block) Call for systematic •• Competenze Competenze change of engineering Personali e Inter- Personali e Inter- education ! personali integrate personali integrate Innovation through •• Sviluppo Sviluppo integration ! Imprenditorialità Imprenditorialità 13
  • Strategie To establish new engineering discipline To restructure engineering discipline To explore new methods of teaching and learning To layout new approach of engineering education To broaden boundary of engineering education To bring up talents for nation competitiveness To build engineering education research capabilities 14
  • La situazione italiana
  • La situazione italiana - il contesto Le lauree in ingegneria sono da tempo al centro dell’attenzione e dell’interesse del mondo industriale La evoluzione del profilo culturale e professionale dell’ingegnere è considerata un tema strategico per la tenuta competitiva del capitale umano delle imprese Lo scenario della competizione economica è sempre più caratterizzato da fattori come la conoscenza, la circolazione dell’informazione, la rapidità dell’innovazione, la convergenza tecnologica, che esprimono competenze nuove per rispondere a nuove esigenze. Nelle imprese italiane, soprattutto nelle loro dimensioni medio- piccole, vi è una forte domanda inevasa di profili tecnici: disegnatori, progettisti, informatici, esperti di processi, responsabili di produzione. 16
  • Il gap di competenze penalizza produttività e crescita della economia “Riconosciamo ai giovani usciti dalle facoltà di ingegneria italiane un buon bagaglio di conoscenze teoriche di tipo tecnico- disciplinare, ma al contempo rileviamo una insoddisfacente capacità di tradurre i saperi acquisiti in comportamenti e prestazioni professionali. In particolare, dovrebbero essere meglio sviluppate alcune competenze-chiave che le imprese ritengono irrinunciabili, quali quelle di tipo gestionale-organizzativo e comportamentale, oltre a un maggior orientamento alla dimensione economica e commerciale della tecnologia” Alberto Meomartini, Consigliere incaricato di Assolombarda per scuola, formazione e università (Milano, 24 gennaio 2008 – Convegno “Le imprese cercano: gli ingegneri ci sono? Domanda e offerta a confronto nel panorama europeo”). 17
  • Il laureato italiano L’employability del laureato italiano in ingegneria, ovvero la sua capacità di essere competitivo in un mercato del lavoro in costante evoluzione e sempre più globale, trova il proprio leit- motiv nel concetto di “competenza”, inteso come: sapere, saper fare, saper essere. Le soft-skill di tipo trasversale - abilità sociali e relazionali la cui importanza viene ancora troppo spesso sottovalutata dalle istituzioni formative e dagli stessi giovani – hanno una sempre maggiore attenzione da parte del mercato del lavoro (ved. "descrittori di Dublino“) Il tasso di prosecuzione molto elevato alla laurea magistrale ha come risultati, non certo positivi, l’età media avanzata dei neo- ingegneri italiani che si affacciano sul lavoro e il mismatch tra le aspettative individuali dei giovani laureati e le reali potenzialità e caratteristiche del mercato del lavoro, che richiede ingegneri competenti e non scienziati. 18
  • "descrittori di Dublino" Enunciati di competenze, in termini di “risultati attesi di apprendimento”, che devono essere conseguiti al termine di un percorso di istruzione terziaria: 1. Conoscenza e capacità di comprensione (knowledge and understanding); 2. Conoscenza e capacità di comprensione applicate (applying knowledge and understanding); 3. Autonomia di giudizio (making judgements); 4. Abilità comunicative (communication skills); 5. Capacità di apprendere (learning skills). L'Italia ha recepito i descrittori di Dublino nell'ambito del decreto 270/2004 di revisione delle classi, richiedendo alle università di esplicitare gli obiettivi formativi dei nuovi corsi in termini di risultati di apprendimento attesi (competenze). 19
  • Criticità Il numero di ingegneri mediamente assunti in un anno nel contesto italiano (14.184) risulta notevolmente inferiore rispetto a quello di Francia (33.756) e Germania (56.379). L’Italia mostra cifre notevolmente più basse anche qualora si consideri l’intensità di assunzioni di ingegneri rispetto allo stock di addetti: 1,01 ingegneri assunti ogni 1.000 addetti nel nostro Paese rispetto ai 2,41 della Francia e ai 2,71 della Germania. Dopo quasi 10 anni dall’introduzione del modello formativo universitario “3+2” rimane irrisolto il complesso rapporto tra saperi tecnico-scientifici di base e saperi specialistici di tipo professionalizzante, e il “come” e “quando” questi due tipi di conoscenze debbano trovare spazio lungo la filiera formativa costituita dal “3+2”. L’università italiana, alla quale è richiesto un nuovo sforzo di cambiamento per effetto del processo di riforma degli ordinamenti didattici, dovrebbe aprirsi maggiormente alle imprese, per riflettere su come dare risposte efficaci alla domanda di professionalità qualificata che perviene dal sistema produttivo. 20
  • CDIO Initiative – The Founders The CDIO approach was first developed in a 2000-06 project funded by Knut & Alice Wallenberg Foundation. FOUNDERS Chalmers KTH Linköping MIT Sweden Sweden Sweden USA Currently (April 2009), CDIO is a multinational organization, numbering 37 universities in 16 countries as collaborators 22
  • CDIO Initiative - Dissemination NEW COLLABORATORS Denmark Tech. U. Queen’s U., Belfast École Poly., Montréal US Naval Academy U. Auckland U. Pretoria U. Wismar Hogeschool Gent U. Liverpool Singapore Poly. Umeå U. University of Colorado California State U. U. Sydney Queen’s U. Ontario 23
  • Engineers who can engineer... The CDIO vision is to educate students who understand how to Conceive-Design-Implement–Operate (CDIO) complex value-added products, processes, engineering systems (Technical), in a modern team-based engineering environment (Interpersonal), and are mature and thoughtful individuals (Personal). 24
  • CDIO Engineering Education Conceive – define needs; develop conceptual, technical and business plans Design – plans, drawings, algorithms that describe process, product or system Implement - transform design into product (plan, buy, make, deliver, return) Operate – deliver the intended value (maintaining, evolving, recycling, retiring product) 25
  • CDIO returns engineering to its heritage Personal, interpersonal & system- building, Engineering practice skills Disciplinary Knowledge Engineers need both dimensions 26
  • Dalla Formazione Professionale all’Alta Formazione Scientifica Alta Formazione Scienziato Scientifica Scienziato Applicativo Formazione Ingegneristica Ingegnere, Architetto Formazione sulle Tecnologo Tecnologie Ingegner. Formazione Tecnica Tecnico Formazione Lavoratore qualificato Professionale Lavoratore non-qualif. Scuola dellÊObbligo 27
  • CDIO goals (1/2) 1. Master a deep working knowledge of technical fundamentals. Engineering education should always emphasize the technical fundamentals and the university is a place where these foundations are laid. Nothing in the CDIO approach is meant to diminish the importance of fundamentals or the student’s need to learn them. 2. Lead in the creation of new products, processes and systems. This goal recognizes the need to prepare students for a career in engineering; that is, CDIO prepares students for what engineers actually do. 28
  • CDIO goals (2/2) 3. Understand the importance and strategic impact of research and technological development on society. Our society relies heavily on the contributions of scientists and engineers to solve problems and create products associated with societal need. Engineering students benefit from an education set in the context of product, process and system development. 29
  • CDIO Syllabus 2001 The building blocks of knowledge, skills, and attitudes 1. Technical knowledge and reasoning 2. Personal and professional skills & attributes 3. Interpersonal skills: teamwork & communication necessary to 4. Conceiving, Designing, Implementing and Operating systems in the enterprise and societal context 4. Conceiving, Designing, Implementing & Operating Systems in the Enterprise and Societal Context 1. Technical 2. Personal & 3. Interpersonal Knowledge and Professional Skills Skills: Teamwork & Reasoning & Attributes Communication 30
  • Map of the new CDIO syllabus Educate students who: understand how to Process 4.CDIO Conceive- Design- Implement– Operate 3. Inter- 1.Technical 2.Personal personal complex value-added products, processes, engineering systems, Product in a modern team-based Team engineering environment, and Self are mature and thoughtful individuals. 31
  • CDIO SYLLABUS 1 TECHNICAL KNOWLEDGE 1.1 Knowledge of Underlying Sciences 1.2 Core Engineering Fundamental Knowledge 1.3 Advanced Engineering Fundamental Knowledge 2 PERSONAL AND PROFESSIONAL SKILLS 2.1 Engineering Reasoning and Problem Solving 2.2 Experimentation and Knowledge Discovery 2.3 System Thinking 2.4 Personal Skills and Attributes 2.5 Professional Skills and Attitudes 3 INTERPERSONAL SKILLS 3.1 Teamwork and Leadership 3.2 Communication 3.3 Communication in Foreign Languages 4 PRODUCT AND SYSTEM BUILDING KNOWLEDGE AND SKILLS 4.1 External and Societal Context 4.2 Enterprise and Business Context 4.3 Conceiving 4.4 Designing 4.5 Implementing 4.6 Operating 32
  • An Invitation The book: Crawley et al. (2007) Rethinking Engineering Education: The CDIO Approach, Springer Verlag. ISBN 0387382879 The International CDIO Conference Proceedings The site www.cdio.org 33