YSI and Sanitaire nitrification and denitrification in wastewater webinar

1,125 views
952 views

Published on

YSI and Saintaire team up to explain measuring nitrification and denitrification rates with the YSI IQ SensorNet in an ICEAS wastewater process.

Published in: Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,125
On SlideShare
0
From Embeds
0
Number of Embeds
14
Actions
Shares
0
Downloads
43
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

YSI and Sanitaire nitrification and denitrification in wastewater webinar

  1. 1. Measuring Nitrification & Denitrification Rates with YSIs IQ SensorNet in an Intermittent Cycle Extended Aeration SystemVisit us at WEFTEC,booth 6239September 2012
  2. 2. Presentation Overview• Introduction• ICEAS Technology• YSI IQ SensorNet• Nitrification & Denitrification• Rate Calculations• Design and Process Control g
  3. 3. Introduction• Cedar Grove, WI Approximately 40 miles north of Milwaukee.• Activated sludge process ICEAS.• On-line instruments for nitrification & denitrification rates.• Optimize process operations and design with deeper dd i ihd understanding of nitrification & denitrification capacity. •3
  4. 4. Cedar Grove, WI – Commissioned 2006 Filters Digester ICEAS Reactors Lab L b Sludge Storage Discharge
  5. 5. Cedar Grove, WI – Commissioned 2006 Influent Conditions Values Average Dry Weather Flow 0.4 mgd (1,515 m 3/day) Peak Wet Weather Flow 1.4 mgd (5,304 m 3/day) BOD5 167 mg/l TSS 297 mg/l NH3-N 23 mg/l P 9 mg/l Effluent Requirements BOD5 10 mg/l TSS 10 mg/l NH3-N 1 mg/l P 1 mg/l ICEAS® Process Design Criteria F:M 0.04 1/day Normal Cycle Time 4.8 4 8 hr Number of Basins 2 Basin Length 78.83 ft. (24 m) Basin Width 25.0 ft. (7.6 m) Top Water Level 16.0 ft. (4.9 16 0 ft (4 9 m) Bottom Water Level 12.0 ft. (3.7 m)
  6. 6. ICEAS Technology
  7. 7. ICEAS - Intermittent Cycle ExtendedAeration SystemPre-React Zone Main React Zone• Usually 12-15% of Basin Volume y • Aeration• Acts as Biological Selector • Mixers• Discourages Filamentous Growth • Decanter• Allows for Continuous Flow • WAS Pump• C ti Continuous S Supply of C b l f Carbon
  8. 8. ICEAS Operating Cycle Continuous Flow of Screened and Degritted Influent 1. React 2. Settle 3. Decant Treated Effluent Waste Sludge
  9. 9. ICEAS Operating Cycle Normal Cycle Operational Sequence (4.8 Hours) 0 24 48 72 96 120 144 168 228 288 AIR OFF AIR ON AIR ON AIR ON **AIR OFF AIR ON AIR ON SETTLE DECANTBasin #1 (24 min Mix) (0-24 min) (0-24 min) (0-24 min) (24 min Mix) (0-24 min) (0-24 min) (60 min) (60 min) 144 168 228 288/0 24 48 72 96 120 144 Storm Cycle Operational Sequence (3.6 Hours)Basin #2 AIR ON (0-24 min) SETTLE (60 min) DECANT (60 min) AIR OFF (24 min Mix) AIR ON (0-24 min) AIR ON (0-24 min) AIR ON (0-24 min) **AIR OFF (24 min Mix) AIR ON (0-24 min) Storm Cycle Operational Sequence (3.6 Hours) 0 18 36 54 72 90 108 126 162 216 AIR OFF AIR OFF AIR ON AIR ON AIR ON AIR ON AIR ON SETTLE DECANTBasin #1 (18 min (18 min (0-18 min) (0-18 min) (0-18 min) (0-18 min) (0-18 min) (45 min) (45 min) Mix) Mix) 108 126 162 216/ 0 18 36 54 72 90 108 AIR ON AIR OFF AIR ON AIR ON AIR ON AIR OFF AIR ON SETTLE DECANTBasin #2 (0-18 (18 min (0-18 (0-18 (0-18 (18 min (0-18 min) (45 min) (45 min) Mix) min) min) min) Mix) min)
  10. 10. ICEAS Basin Cross SectionDraw Down Buffer Zone Sludge Blanket• Difference Between • Typically 3 ft • Function of F:M Top and Bottom • Acts as Safety Ratio R ti Water Level Factor • Function of • Occupied by Influent Loading• Limited to 1/3 of Sludge Blanket if • Target SVI = 150 TWL or Max 6 ft SVI > 150• Function of Peak Flow and Cycle Times Drawdown Buffer Zone Sludge Blanket
  11. 11. Probes: Midpoint of Main React Basin
  12. 12. YSI Instrumentation
  13. 13. What is inside the black box? See what’s behind the black box with on line what s on-line monitoring instrumentation.
  14. 14. 4 Basic Components Terminal / Modules Cables Sensors Controller 4 Basic Components
  15. 15. •2020 XT Controller System y• Sensor network• 1 - 20 parameters
  16. 16. Modules Power supply Wide range of power supplies: 100 – 240VAC 24VAC 24VDC Analog outputs mA outputs Relays R l Communication MODBUS Interfaces RS232 communication to PC via sw (2020 only) Ethernet (2020 only) Includes barometric pressure compensation for DO for 2020 Magnetic valve Valve module for automatically controlled air cleaning Blue Tooth Wireless communication for the IQ communication SensorNet system. Max. 100 meters Inputs Accepts signal inputs from third party analog devices
  17. 17. Cables Sensor connection Module connection cable cable Cables •One design fits all all… • One type of connection cable for all sensors • One type of module connection cable
  18. 18. IQ Networking •Distributed mounting •Stack mounting – max. 3 modules •Contact Plate: •Power, communication• Smart installation…• Stack mounting – no cables
  19. 19. Typical Instrument Installations DIQ/S 182 XT DIQ/S 182 XT DIQ/S 182 XT DIQ/S 182 XT 472001 472001 472001 472001power power power power Control Panel ViSolid700IQ FDO 700 IQ ViSolid700IQ FDO 700 IQ ViSolid700IQ FDO 700 IQ ViSolid700IQ FDO 700 IQ 600012 201650 600012 201650 600012 201650 600012 201650 Basin 1 Basin 2 Basin 3 Basin 4
  20. 20. IQ SensorNet Solution
  21. 21. IQ Sensors Spectrometric • Nitrate • COD, BOD… y •Conductivity Optical & electrochemical •D.O. ISE•pH / ORP Optical • Ammonium •TSS • Nitrate •Turbidity
  22. 22. NEW!! IFL – Interface level sensor Ultrasonic measurement of sludge level • Factory calibrated • S t immersion and Set i i d tank depth • Accuracy: +/- 0 3 ft / 0.3
  23. 23. FDO Optical DO Sensor • Soft green light•Approved for • 2 year warranty y y Compliance Monitoring!! • Highly accurate • No regular sensor maintenance required Intelligent Sensor Cap • Factory calibrated • Cal data stored on memory chip hi • Automatic data transfer • N calibration required! No lib ti i d!
  24. 24. Total Suspended Solids (TSS) • Optical measurement • Factory calibrated for 2 types of sludge: f l d • Activated sludge 3 - 7 g/L (scattered light) • Primary sludge 30 - 60 g/L (backscatter) OR • Correction factor: 0.5 to 2.0 –ViSolid® 700 IQ if needed, depending on application • Optional calibration: 1 to 8 pt.
  25. 25. UltraClean – Ultrasonic Cleaning TM without cleaning system with cleaning system A clean sensor ensures accurate measurements! Maintenance-free sensor lowers operational costs.
  26. 26. UltraClean – Ultra Sonic Cleaning TM• Continuous cleaning system without y mechanically moving parts• Very smooth sensor surface (Sapphire)• No smearing or scratching effect• No regular service, no wear and tear, no replacement parts needed
  27. 27. VARiON® Plus 700 IQ, AmmoLyt ® Plus 700 IQ,NitraLyt® Plus 700 IQ – ISE Measurement •Measurement principle: • Measuring, reference and compensation electrode. • Nit t requires Chl id Nitrate i Chloride NitraLyt®Plus compensation for highest accuracy. •AAmmonium requires i i Potassium compensation for highest accuracy ®Plus lAmmoLyt®Plus VARiON
  28. 28. Electrode Replacement • Individual electrode replacement lowers lifetime p costs • Electrodes warranted for 12 months
  29. 29. Nitrification & Denitrification
  30. 30. Ammonification / Nitrification• Organic-nitrogen  ammonia-nitrogen• Ammonia-nitrogen  nitrate-nitrogen• Aerobic conditions A bi diti• Temperature, SRT, pH, DO, and alkalinity• Autotrophic bacteria (CO2) Org-N Ammonification Org-N → NH4-N TKN Nitrification NO3-N NH4-N NH4-N →NO2-N→NO3-N Cell Growth
  31. 31. Denitrification• Nitrate-nitrogen  nitrogen gas• Bacteria use chemically bound O2 in lieu of dissolved oxygen• Anoxic environment• Heterotrophic bacteria (organic matter)• Temperature dependent Nitrogen• Rate impacted by carbon source Gas Org-N Ammonification Org-N → NH4-N Denitrification TKN NO3-N →N2 Nitrification NO3-N NH4-N NH4-N →NO2-N→NO3-N Cell Cell Growth Growth
  32. 32. Rate Calculations
  33. 33. Data for Calculating RatesDefining nitrification or denitrification rates:• Time duration of aerobic or anoxic conditions• Change in Nitrate concentration (NO3)• Mass of mixed liquor volatile suspended solids (MLVSS)• Reactor temperatureAlso consider:• Oxidation Reduction Potential (ORP)• Di Dissolved O l d Oxygen (DO)
  34. 34. REACT Cedar Grove M AIR S D 8 AIR OFF 7 Nitrification 6 5 mg/l 4 3 2 1 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00 2:00 4:00 6:00 8:00 Time DO NH4 NO3
  35. 35. yNitrification PRZ MLSS 1,045 mg/L SS MLVSS 732 mg/L 3 g/ water level 13.2 ft volume 24,684 gal MLVSS for PRZ MLVSS 151 lb MRZ MLSS 2,090 mg/L MLVSS 1,463 mg/L water level 13.2 ft volume 165,383 gal MLVSS for MRZ MLVSS 2,019 2 019 lb Nitrate temperature 14.4 °C water level 14.50 ft initial NO3-N 1.28 mg/L final NO3-N 6.62 mg/L ∆ NO3-N 5.34 mg/L initial time 8:28 AM ∆NO3 = NH3-N nitrified final time 10:57 AM aeration ti ti time 2.48 hours NH3-N nitrified 9.69 lb Nitrification RateNitrification rates @T °C and @20 °C KnT 0.00180 lb NH3-N/lb MLVSS-hr @ T°C θ 1.080 1 080 unitless Kn20 0.00277 lb NH3-N/lb MLVSS-hr @ 20°C
  36. 36. REACT Cedar Grove M AIR S D 8 AIR OFF 7 Nitrification Denitrification 6 5 mg/l 4 3 2 1 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00 2:00 4:00 6:00 8:00 Time DO NH4 NO3
  37. 37. Denitrification Cycle Morning Settle PRZ MLSS 1,246 mg/L MLVSS 1,165 mg/L water level 12.91 ft volume 24,142 gal MLVSS for PRZ MLVSS 235 lb MRZ MLSS 1,806 mg/L MLVSS 1,589 mg/L water level 12.91 ft volume 161,749 gal MLVSS for MRZ MLVSS 2,145 lb Nitrate temperature 17.7 °C initial water level 13.82 ft final water level 14.16 ft initial NO3-N 9.14 mg/L final NO3-N 6.90 mg/L ∆ NO3-N -2.24 mg/L initial time 12:05 PM ∆NO-∆NO3 = NO3 Denitrified final time 12:49 PM anoxic time 0.73 hours NO3-N denitrified 3.44 lb Denitrification Rate Denitrification rates @T °C and @20 °C KdnT 0.00197 lb NO3-N/lb MLVSS-hr @ T°C @ @ θ 1.080 1 080 unitless Kdn20 0.00235 lb NO3-N/lb MLVSS-hr @ 20°C
  38. 38. Cedar Grove 10 3000 9 NITE REACT 2500 8 DENITE 7 2000NH4, NO3, DO (mg/l) 6 5 1500 DENITE 4 1000 3 2 500 1 0 0 9/30/2011 9/30/2011 9/30/2011 9/30/2011 9/30/2011 9/30/2011 9/30/2011 9/30/2011 9/30/2011 9/30/2011 10/1/2011 0:00 2:24 4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:00 Time SETTLE & DECANT NH4-N NO3-N DO MLSS
  39. 39. ICEAS Operating Cycle Normal Cycle Operational Sequence (4.8 Hours) 0 24 48 72 96 120 144 168 228 288 AIR OFF AIR ON AIR ON AIR ON **AIR OFF AIR ON AIR ON SETTLE DECANT Basin #1 (24 min Mix) (0-24 min) (0-24 min) (0-24 min) (24 min Mix) (0-24 min) (0-24 min) (60 min) (60 min) 144 168 228 288/0 24 48 72 96 120 144 AIR ON SETTLE DECANT AIR OFF AIR ON AIR ON AIR ON **AIR OFF AIR ON Basin #2 (0-24 min) (24 min Mix) (0-24 min) (0-24 min) (0-24 min) (24 min Mix) (0-24 min) (60 min) (60 min) Storm Cycle Operational Sequence (3 6 Hours) (3.6 0 18 36 54 72 90 108 126 162 216 AIR OFF AIR OFF AIR ON AIR ON AIR ON AIR ON AIR ON SETTLE DECANTBasin #1 (18 min (18 min (0-18 min) (0-18 min) (0-18 min) (0-18 min) (0-18 min) (45 min) (45 min) Mix) Mix) 108 126 162 216/ 0 18 36 54 72 90 108 AIR ON AIR OFF AIR ON AIR ON AIR ON AIR OFF AIR ON SETTLE DECANTBasin #2 (0-18 (18 min (0-18 (0-18 (0-18 (18 min (0-18 min) ( (45 min) ) ( (45 min) ) Mix) min) min) min) Mix) min)
  40. 40. Denitrification – First Period Vs. Fifth PeriodCycle First Period Mix Cycle Fifth Period MixPRZ PRZMLSS 1,161 mg/L MLSS 1,161 mg/LMLVSS 1,085 mg/L MLVSS 1,085 mg/Lwater level 13.07 ft water level 13.07 ftvolume 24,434 gal volume 24,434 galMLVSS 221 lb MLVSS 221 lbMRZ MRZMLSS 1,682 mg/L MLSS 1,682 mg/LMLVSS 1,480 mg/L MLVSS 1,480 mg/Lwater level 13.07 ft water level 13.07 ftvolume 163,708 gal volume 163,708 galMLVSS 2,022 2 022 lb MLVSS 2,022 2 022 lbNitrate Nitratetemperature 18.5 °C temperature 18.5 °Cinitial water level 12.14 ft initial water level 13.10 ftfinal water level 12.31 ft final water level 13.39 ftinitial NO3-N 4.28 mg/L initial NO3-N 8.05 mg/Lfinal NO3-N 3.69 mg/L final NO3-N 6.56 mg/L? NO 3-N -0.59341 mg/L ? NO 3-N -1.48761 mg/Linitial time 7:59 AM initial time 9:24 AMfinal time 8:12 AM final time 9:48 AMaeration time anoxic time 0.22 0 22 hours aerationtime anoxic time 0.40 0 40 hoursNO3-N denitrified 0.79 lb NO3-N denitrified 2.12 lbDenitrification Rate Denitrification RateKdnT 0.00162 lb NO3-N/lb MLVSS-hr @ T°C KdnT 0.00236 lb NO3-N/lb MLVSS-hr @ T°Cθ 1.080 unitless θ 1.080 unitlessKdn20 0.00182 lb NO3-N/lb MLVSS-hr @ 20°C Kdn20 0.00265 lb NO3-N/lb MLVSS-hr @ 20°C
  41. 41. Design and Process Control
  42. 42. How Do We Use this Data?Design Stage:• Compare measured rates at different facilities, perhaps to identify the impact of influent BOD/TKN ratios• Determine cycle structure (4, 5, 6 cycles/day)• C l l Calculate anoxic & aerobic time within cycle i bi i i hi l• Reconcile nitrifier specific growth rate (μmax) with nitrification rate for SRT calculation• Better understand denitrification capacity during settle
  43. 43. How Do We Use this Data?Operations:• Provides a “health check” of system – decreased rates health check could confirm inhibition• Predicts actual MLVSS required for nitrification & denitrification• Identifies real-time nitrification and denitrification capacity• Compare actual SRT with design SRT p g• Determine aerobic (air-on) and anoxic time (air-off) to meet total N requirement• O li effluent ammonia and nitrate readings when Online ffl t i d it t di h system is in settle/decant phase
  44. 44. Questions…
  45. 45. Thank you for your attention! Sanitaire ContactYSI Contact Information: Information:Visit Visit us at: ysi.com and register to win Sanitaire.com/us an IQ SensorNet Email E il us at: tSign up for our wastewater SanitaireBrownDeer@Xyleminc.com eNewsletter Call us at: 414-365-2200Email us at: environmental@ysi.comCall us at: 800 897 4151 800-897-4151,937-767-7241

×