Webinar on "Clearing the Air: Reducing GHG Emissions from U.S. Natural Gas Systems"
Upcoming SlideShare
Loading in...5
×
 

Webinar on "Clearing the Air: Reducing GHG Emissions from U.S. Natural Gas Systems"

on

  • 1,199 views

Lead authors James Bradbury and Michael Obeiter review a new WRI working paper and its key findings, with particular attention on state-level policy solutions. For more information about this webinar, ...

Lead authors James Bradbury and Michael Obeiter review a new WRI working paper and its key findings, with particular attention on state-level policy solutions. For more information about this webinar, visit http://www.wri.org/event/2013/04/webinar-clearing-air-reducing-ghg-emissions-us-natural-gas-systems

Statistics

Views

Total Views
1,199
Views on SlideShare
677
Embed Views
522

Actions

Likes
0
Downloads
12
Comments
0

6 Embeds 522

http://www.wri.org 239
http://wri-main.loc 107
http://unjobs.org 88
http://d7.wri.atendesigngroup.com 44
http://www.scoop.it 43
http://translate.googleusercontent.com 1

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

CC Attribution License

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment
  • We wrote this working paper and hosted this event to help foster a solutions-oriented dialogue on this challenging topic.We are motivated by a sense of urgency to reduce greenhouse gas pollution from all major sources, which is what it will take to stabilize the climate at relatively safe levels.A recent WRI report found that cost-effective cuts in methane leakage from natural gas systems are among the most important steps the U.S. can take toward meeting its goal of reducing GHG emissions by 17 percent below 2005 levels by 2020.This working paper pulls together several lose threads from across an important, far-reaching conversation about the climatic implications of the shale gas production boom, here in the U.S.
  • This paper:summarizes the state of knowledge about methane emissions from U.S. natural gas systems, highlights emissions reduction potential,and discusses the role of current and future policies in helping to reduce these emissions Scope: Our primary focus is upstream methane emissions from the natural gas sectorAnd by “upstream,” we mean upstream of the city gate or plant gate (including pipelines)
  • As this familiar graph demonstrates, natural gas production has grown rapidly over the past 5 years, and is projected to continue to grow through 2040, largely through increased production of shale gas. Methane is the primary component of natural gas and a potent greenhouse gas that is contributing significantly to climate change. EPA estimates that fugitive methane comprises roughly 3 to 4% of total GHG emissions in the U.S. That’s more greenhouse gases than were emitted (directly and indirectly) by all U.S. iron and steel, cement, and aluminum manufacturing facilities combined.It is important to reduce the methane leakage rates as much as possible, as quickly as possible. We cannot afford to take a wait-and-see approach.
  • Unfortunately, there is no easy way to compare the climate impacts of coal with natural gas, which helps to explain why this has been such a contentious debate.This figure and the discussion around it in the working paper is one way that we attempted to “clear the air” on an important, complex issue.To he question of how natural gas compares to coal, from a climate standpoint, there are three key factors that affect the answer:Three Key Factors: GWP for Methane (a science and policy question)Methane Leakage Rate (a data question)End-use combustion efficiencyMost recent studies estimate U.S. leakage rates in the range of 2 – 3 percent of total production.But, to ensure that gas is and remains less greenhouse gas-intensive than coal, it is critical to keep leakage rates below 3 percent.
  • Another way that the working paper tries to “clear the air” is by unpacking why previous life cycle assessments (LCA) have varied in their findings. In general, despite uncertainties, there is fairly close agreement between typical LCA study findings. In part because most studies rely heavily on the same government data sources (eg: EPA’s GHG inventory) In general, primary differences occur when studies use different data. during the production stage, where each study makes different assumptions about how frequently high-emissions activities are performed (like refracturing wells to stimulate production) and how widely emissions control technologies are usedWith over 500,000 natural gas wells, thousands of processing plants and compressor stations, and hundreds of thousands of miles of transmission pipelines……reaching anything close to agreement on the data or underlying assumptions is difficult to do.
  • So, where do we go from here? We want to focus on policy solutions, because despite data uncertainties, there is broad agreement that more should be done by industry and governments to reduce air emissions from natural gas systems. In the next few slides, I’ll briefly walk you through the findings of our research on emissions reductions that are expected from recently finalized EPA rules, and the potential for further cost-effective reductions in methane emissions from this sector.
  • First,New standards from EPA that are now in effect require “green completions” for all hydraulic fracturing operations. This requires that methane is no longer vented during well completion operations at unconventional wells.NSPS primarily affects shale gas systems due to its focus on emissions from hydraulic fracturing well completions (during pre-production) and workovers (during production), as well as equipment used during processing which is common to both shale and conventional gasThis is the extent to which the rules will reduce shale gas emissions over time. In our projections, even as shale gas production increases dramatically over the next 20 years, shale gas emissions don’t return to current levels until 2035
  • This will reduce total, system-wide upstream GHG emissions by 13 percent in 2015 and 25 percent by 2035. We project very slow growth in methane leakage going forwardImplementation, and enforcement will be critical to ensure that these reductions are realizedBut natural gas systems are still a significant source of GHG emissions, and more work can still be done to reduce those emissions
  • As natural gas production is expected to increase dramatically over the coming decades, it is critical to reduce emissions as much economically and technologically feasible.We have identified three technologies that will get us another 30% (conservatively with 3-year pay-back)These include:plunger lifts, low-bleed pneumatic controllers, and leak detection and repairGo-getter gets us to below the 1% leakage rate, which is achievable with the application of “5 additional abatementtechnologies”and also cost-effective (smaller pieces, 3-year payback)I want to emphasize the significance of the 1 % leakage rate. This is the point at which previous research has found that life cycle emissions from natural gas are comparable to diesel, when used as fuel in heavy-duty vehicles (like trucks and buses). Achieving this also more than ensures that gas is less greenhouse gas-intensive than coal. So, while this is an important benchmark, it is not a clean bill of health. We need for alternative fuels to be far better than diesel or coal if we are going to meaningfully reduce GHG emissions in the U.S. (or anywhere, for that matter). (The “Go-getter” scenario includes TEG dehydrators, dessicant dehydrators, improved compressor maintenance, pipeline maintenance and repair, vapor recovery units.)
  • In the final slides, I’ll present highlights from the policy section of our paper, where we suggest 15 steps that could be taken to help realize the emissions reduction scenarios I just discussed After looking at this issue closely, we concluded that policy will be critical for achieving meaningful methane emissions reductions. We actually noted many similarities between this issue and energy efficiency: includingregulatory barriers and market failures that reduce the incentive for companies to invest in cost-effective emissions control technologies.Given this, plus the scale and the urgency of this issue, we see an important role for federal policy, including through the direct regulation of GHG emissions from major sources, including natural gas systems. Fed PolicyEPA has the authority to get started now on achieving reductions from both new and existing sources, and to do so in a way that accounts for industry concerns (with respect to costs and technology limitations), andwhile giving flexibility to states, who have the expertise and local knowledge to effectively implement national standards.State policyAs we’ll hear from our panel, state policy actions to date have been motivated by the need to improve air quality.To keep up with the scale and pace of development, states will need new revenue streams. We agree with previous studies that fees on industry activities would be appropriate to ensure that regulators and enforcement officers are well-resourced enough to effectively protect the public interestStates would also benefit from technical assistance, provided by the EPA and other federal agencies, Finally, states would benefit by learning from each other, since some have much more experience and expertise than others. We propose a comprehensive database on current state approaches to effectively curbing emissions from all stages of natural gas systems.
  • Getting a better handle on the data is critical and direct measurements needed to achieve this goal.This is important to:track industry progressDevelop appropriate regulationsInform energy and climate policies, more broadlyApplied technology R&D can both improve our capacity to accurately, directly measure leakage rates, but also increased our options for achieving cost-effective reductionsFinally, more research is needed to better understand if and when reforms will be necessary to ensure that regulations and market structures are well aligned with public interests, including positive environmental outcomes.
  • … which are driving up global temperatures, causing sea level rise and increased frequency of extreme weather events… from a climate standpoint. This is an important example of where life cycle assessment can inform policy making and investment decisions… our panel will discuss this issue in greater detail, but it is important to remember that we cannot wait for perfect information before taking action.… with less than a 3-year payback period. We suggest a range of policy actions that could be taken by federal and state governments to achieve continuous improvements, over time.This is a rapidly evolving landscape and within the next year we expect many important developments on both informational and regulatory fronts. We look forward to continuing to engage with all of you in this conversation.Kevin, do we have time for questions?
  • WRI has experienced unprecedented growth during a time of global economic turbulence. We have nearly doubled our budget in the past four years. While gratified by the recognition of our role and results by donors, we have also taken steps to strengthen the organization to ensure a robust future. We believe that WRI’s steadfast focus on our objectives over many years – while pursuing creative and realistic strategies to advance them – have established a reputation for high quality work and ability to deliver outcomes. Our independence opens avenues for WRI to pursue innovative solutions, while our dedication to excellence has built a reputation for trust. This fiscal year – 2011 – WRI continues to raise funds from an array of sources: foundation, business, government and individuals. We pursue new sources of funds while continuing relationships of many years with donors who have sustained our work with large, multi-year commitments. Despite financial stresses among all sectors of our sources of funding, WRI has retained the confidence of a community of supporters.  To strengthen our expertise and managerial capabilities, WRI has conducted worldwide searches and hired outstanding individuals who bring a wealth of pertinent skills, knowledge and experiences to our team.  We are focusing on ensuring that our values remain constant as we evolve and that our culture of collaboration and leadership remains intact. We have instituted a culture of communications at WRI.  The term ‘everyone is a communicator’ is a hallmark of this effort, which has equipped everyone with the tools, training and immersion in strategies to influence our communities of decision-makers.  In a multi-media world, we are utilizing all appropriate channels, technologies and creative solutions to advance sustainability and effect change. Our fledgling China office is maturing into a fully-functioning and highly effective agent for change in that country. And WRI is establishing platforms in India and Brazil to expand our work with partners, learn from them and provide value to those societies. As WRI approaches its 30th year, we do so with an optimism and confidence that we will ensure a sustainable planet for current and future generations.

Webinar on "Clearing the Air: Reducing GHG Emissions from U.S. Natural Gas Systems" Webinar on "Clearing the Air: Reducing GHG Emissions from U.S. Natural Gas Systems" Presentation Transcript

  • James Bradbury, Senior Associate, Lead AuthorCo-authors: Mike Obeiter, Laura Draucker, Wen Wang andAmanda StevensApril 23, 2013Clearing the Air:Reducing Upstream Greenhouse GasEmissions from U.S. Natural Gas Systems
  • Overview1) What is known about methane emissionsfrom natural gas systems?2) What has been done to reduce thoseemissions?3) What more can be done?
  • Why we need to “get it right”
  • Natural gas vs. coal: a climate perspectiveSource: adapted from IEA, “Golden Age of Gas” special report (Figure 1.5)
  • Estimating Emissions From Shale Gas Systems
  • Opportunities to Reduce Fugitive Methane• New EPA rules – NSPS/NESHAP– Volatile Organic Compounds(VOCs)– Hazardous Air Pollutants (HAPs)• Two Scenarios with additional reductions– Low-hanging fruit– “Go-getter” scenario
  • Upstream GHG Emissions Projections, ShaleGas Systems0204060801001201401601802005 2010 2015 2020 2025 2030 2035MMtCO2e,100yrGWPBusiness asUsualReferenceCase, with EPANSPS RulePre-NSPSBAU(w/ NSPS)Source: Baseline GHG data from Weber and Clavin (2012), EPA (2012a), and EIA (2012).
  • Upstream GHG Emissions Projections,All Natural Gas Systems0501001502002503003504002005 2010 2015 2020 2025 2030 2035MMtCO2e,100yrGWPReference CaseReferenceCase, with EPANSPS RulePre-NSPSBAU(w/ NSPS)Source: Baseline GHG data from Weber and Clavin (2012), EPA (2012a), and EIA (2012).
  • Upstream GHGEmissionsProjections fromall Natural GasSystems,with TwoAbatementScenariosSource: Baseline GHG data from Weber and Clavin (2012), EPA (2012a), and EIA (2012).
  • Federal & State Policies to Reduce Emissions• EPA - Direct regulation of GHG emissions– Address new and existing sources– Gets sources with lower VOC concentrations• Enabling State Policy Leadership– Raise revenues to help state agencies keep pace– Provide technical and regulatory assistance tostates with expanding O&G development– Develop a database on state policy actions;support model rules and legislation
  • Improve Understanding of Emissions/Expand Policy and Technology Options• Collect and Analyze emissions data– Direct emissions measurements– Update emissions factors for key processes• Applied technology research anddevelopment– Emissions measurement/leak detection– Reduce costs for abatement options• Identify and address barriers to investment incost-effective emissions controls
  • Key Takeaways1. Fugitive methane emissions represent roughly 3 to 4%of total U.S. GHG emissions2. Reducing these emissions to below 1% will helpensure that fuel-switching to natural gas is beneficial3. Fugitive methane occurs at every stage of the naturalgas life cycle, more direct measurements are needed4. Recent EPA rules will stem methane leakage; but muchgreater reductions can be achieved cost-effectively5. The Clean Air Act is an appropriate tool for policyaction; responsive to industry and flexible for states
  • Thank YouJames Bradbury Mike Obeiterjbradbury@wri.org mobeiter@wri.org