SlideShare a Scribd company logo
1 of 38
Download to read offline
利用大型底栖无脊椎动物进行
    河流生态系统健康评价
Assessing the River Health Using Benthic
Macroinvertebrate Assemblages

                             王备新
         南京农业大学 昆虫系 水生昆虫与溪流生态实验室
                            Beixin Wang
            Laboratory of aquatic insects and stream ecology
    Department of Entomology, Nanjing Agricultural University
                      wangbeixin@njau.edu.cn
Outline
一、底栖动物介绍
二、底栖动物作为生物指示种的优点
三、河流健康的底栖动物学评价方法
四、利用底栖动物完整性指数B-IBI评价河流健康
五、利用RIVPACS模型评价河流健康
一、底栖动物介绍

底栖动物(benthos)是指生活史的全部或大部分时
 间生活在水体(溪、河、水库、湖)底部的水生
 动物
通常将不能通过500µm(0.5mm)孔径筛网的底栖
 动物称为大型底栖无脊椎动物(benthic
 macroinvertebrate).
大型底栖动物中的无脊椎动物称为大型底栖无脊椎
 动物,包括昆虫纲的蜉游、蜻蜓、毛翅目、襀翅
 目等,甲壳纲的龙虾、水虱等,软体动物门的蚌、
 螺等,环节动物门的水蛭、水蚯蚓等。
扁形动物     线形动物
                     环节动物—寡毛纲




环节动物—蛭纲
                     软体动物—瓣腮纲
          软体动物—腹足纲
昆虫纲Insecta




       襀翅目         毛翅目
蜉蝣目




双翅目     鞘翅目        蜻蜓目
二、底栖动物作为生物指示种的优点

1. 水生态环境质量(水质/生境)的指示性
   好且准确,方便水环境管理实践的应用。
(1)极清洁水体指示种(Excellent): 蜉蝣目
  Ephemeroptera, 襀翅目Plecoptera, 毛翅目
  Trichoptera,脉翅目Neuroptera
(2)清洁水体指标种:蜉蝣目Ephemeroptera, 毛
 翅目Trichoptera,广翅目Megaloptera
(3)污染水体指示种:蛭纲Hirudina, 红摇蚊red
 chironomids, 水丝蚓属 Limnodrilus sp.
2. 生活周期长,活动能力弱,能够反应污染
  物的累积效应
   大部分1年发生1代或2代
3. 个体大,较易鉴定或识别
   绝大多数的类群凭肉眼就可以识别至科。
4. 采集方法比较简单,1-2人就可以完成野外
  采集。
三、河流健康的底栖动物学评价方法
1. 健康的河流
   组成结构(物理、化学、生物)和功能(自然、
    生态、社会服务)
2. 河流健康的生物学评价方法
    河道特征            能源




           生物群落的结
           构与功能
   化学属性
                     生物相互作用


            水文
(1)单个生物指数法 (BI: Biotic Index)
(2)生物完整性指数法(IBI)
(3)摄食功能类群分析法(Functional
 Feeding Group)
 (4)生物群落的生物属性法(Biological
 traits) ----功能多样性
(5)落叶分解速率法
(6)预测模型法(RIVPACS)
三、利用底栖动物完整性指数B-IBI评
            价河流健康
1. 研究区域概况
西苕溪
(30°23′~31°11′N,
119°14′~120°29′E)
位于太湖上游地区的浙西
水利分区,发源于天目山,
下游是长兴平原。干流总
长157 km,流域面积约
2200 km2,
2. Methods
2.1 Field work
 64 sampling sites
      ( 15 reference
      sites)
 Five surber nets
      each site
 8 environmental
      variables
     including water
    chemistry, habitat
      variables,
      watershed land
      use upstream of
      sampling sites
2.2 Data analysis
Stepwise evaluating 36 candidate
  metrics.
 Crop, forest and urban land use in
 upstream watershed of every site were
 analyzed using satellite image and a
 Digital Elevation Model.
Statistical analysis was performed by
 SPSS 16.0.
3. Results
 B-IBI was composed of seven metrics:
 Total taxa,

 EPT taxa,

 Coleoptera%,

 Three dominant taxa,

 (Hydropsychidae/Trichoptera) %,

 Filterers%

 Biotic Index (BI).

                                                    Fig.1 Box-plot of IBI in reference
                                                    sites (R) and stressed sites (S)

Table 1. Narrative interpretations and their numeric criteria (n=64)

     Excellent         Good            Fair          Poor
       >4.64         3.15-4.64      2.34~3.15       <2.34
Relationship of B-IBI with environmental
 variables
Pearson’s coefficient=-0.431, (p<0.001, n=99)   Pearson’s coefficient=0.482, (p<0.001, n=99)




Pearson’s coefficient=-0.403, (p<0.001, n=84)    Pearson’s coefficient=-0.357, (p=0.001, n=84)
Sub-basin         Riparian               Local
entire drainage   200m buffer on each    200m buffer on
upstream from     side of sample point   each side of
sample point      extending length of    sample point
                  the drainage           extending 1km
                  network                upstream
            Morley and Karr (2002)
Pearson’s coefficient=0.471, (p<0.001, n=101)
                                                 Pearson’s coefficient=-0.352, (p<0.001, n=101)


                                                Fig. 2 the relationship among IBI and
                                                the percentage of forest land use,
                                                cropland use and urban land use at
                                                the sub-basin scale.



                                          Pearson’s coefficient=-0.421, (p<0.001, n=101)
Pearson’s coefficient=0.655, (p<0.001, n=100)
                                                 Pearson’s coefficient=-0.460, (p<0.001, n=100)


                                                Fig. 3 the relationship among IBI and
                                                the percentage of forest land use,
                                                cropland use and urban land use at
                                                the local scale.



                                          Pearson’s coefficient=-0.444, (p<0.001, n=100)
Pearson’s coefficient=0.633, (p<0.001, n=100)
                                                 Pearson’s coefficient=-0.470, (p<0.001, n=100)


                                                Fig. 4 the relationship among IBI and
                                                the percentage of forest land use,
                                                cropland use and urban land use at
                                                the riparian scale.



                                          Pearson’s coefficient=-0.397, (p<0.001, n=100)
四、 利用RIVPACS模型评价河流健康
1. 原理
  生物的分布受自然环境梯度(气候、地形地貌、土壤、
  温度、光照、降水量、海拔)等决定。可根据生物分
  布的规律与自然环境梯度之间的内在关系来预测生物
  可能的分布范围。

2. 理论假设
期望值E(Expected value):监测样点在受干扰前,可能具
   有的生物群落组成(物种名录和物种数)。
观测值O(Observed value): 期望出现的生物物种被实际调
   查到的数量。
O/E值(O/E value):监测样点偏离“正常位置”的“距
   离”,也可以认为是受干扰样点生物多样性丧失的程
   度。
3. 发展历史及现状
 英国淡水生态研究所(Institute of Freshwater Ecology)于
  1984年建立. 至2008年先后开发出了:RIVPACS II、
  RIVPACS III和RIVPACS III+ 。
 澳大利亚1996年开发了AUSRIVAS 模型,目前已建立了适合
  不同生态区使用的48个相对独立的模型。
 新西兰1998年建立了溪流健康监测和评价的预测模型
  SHMAK(Stream Health Monitoring and Assessment Kit)。
 瑞典开发了适合本国溪流使用的SWEPACSRI和湖泊使用的
  SWEPACLLI模型。
 加拿大的模型是BEAST(BEnthic Assessment of SedimenT)模
  型。
 美国EPA和各州已开始构建和推广使用预测模型评价水体生
  态质量。
 目前O/E指标是欧盟水框架计划最主要的生物评价指标之一。
AUSRIVAS


http://ausrivas.canberra.edu.au/
4、RIVPACS模型的构建
4.1 研究区域概况
• 漓江为珠江的上游河段,发源于兴安县猫儿山,
 止于平乐,平乐以下江段称为桂江。漓江全长
 164km,总流域面积6050km2 ,市区内长度
 49.3km。

• 漓江流域属于亚热带温润季风气候,年均降雨量
 达到1627mm,受季风影响,丰枯水季明显。
4.2 材料与方法
4.2.1 理化、生境
和生物数据采集

2008年3月 35个样
点(20个样点)
2008年10月 39个样

点(28个样点)。

3月和10月皆采样的

样点数15。
                 Fig. 1 Benthos sampling sites in Lijiang River in Mar.
                 (left) and Oct. (Right)
4. 2. 2 构建RIVPACS模型的步骤
(1)根据生物数据对样点进行分组,
(2)判别分析的方法确定与生物分组结果
  一致的一组环境变量,建立判别函数,
(3)预测监测点属于不同组的概率,
(4)计算不同分类单元在监测点可能出现
  的概率,
(5)确定在监测点期望出现的具体的分类
  单元(物种)。
 环境数据
经纬度、海拔、河流的水面宽度、深度、平均流
 速、最大流速 、pH、电导率、溶解氧、温度、
 COD 、TN、TP等、底质组成等。


 生物数据
底栖动物群落数据。
4.3 研究结果

参照点分组结果




   Fig.2 Cluster results of reference sites using BC index
 Predictor variables

深宽比、温度、底质类型I(≤2mm)、底质类型I
  (>256mm)
 Predictive model validation
表1. 漓江源头猫儿山期望出现的具体分类单元和实际观测到的分类单元及数量
Baetidae               Baetis           四节蜉属     1      Ephemerellidae    Cincticostella    带肋蜉属    0.802

Hydropsychidae         Cheumatopsyche   纹石蛾属     1      Nemouridae        Nemoura           叉襀属     0.801
Simuliidae                              蚋科       1      Baetidae          Baetiella         花翅蜉属     0.8
Tipulidae                               大蚊       1      Leptophlebiidae   facialis          宽基蜉属    0.796
                       Neochaliodes     斑鱼蛉属     1      Leuctridae        Perlomyla         长卷襀属    0.796
                       Neoneuromus      齿蛉属      1      Heptageniidae     Cinygmina         似动蜉属    0.607
Helodidae                               沼甲科      1      Ephemerellidae    Torleya           大鳃蜉属    0.605
Parapoynx crisonalis                    草螟科      1      Euphaeidae                          溪蟌科     0.605

Thalerosphyrus                          短鳃蜉属    0.999   Hydrophilidae                       水龟虫科    0.605

Philopotamidae                          等翅石蛾科   0.999   Psephenidae                         扁泥甲科    0.604
Elmidae                                 长角泥甲科   0.995   Gomphidae                           春蜓属     0.602
Tabanidae                               虻科      0.803                                       涡虫      0.593
Hydrobiosidae                           螯石蛾科    0.802




                                                                                           E=20.8
                                                                                           O=22
                                                                                           O/E=1.057
                                漓江源头猫儿山
表2. 漓江中游兴坪期望出现的具体分类单元和实际观测到的分类单元及数量
Heptageniidae     Cinygmina        似动蜉属     1      Euphaeidae                       溪蟌科       0.889

Baetidae          Baetis           四节蜉属     1      Hydrophilidae                    水龟虫科      0.889
Hydropsychidae    Cheumatopsyche   纹石蛾      1      Baetidae         Baetiella       花翅蜉属      0.888
Simuliidae                         蚋科       1      Ephemerellidae   Uracanthella    角蜉属       0.886
Tipulidae                          大蚊       1      Perlidae         Neoperla        新襀属       0.778
                  Neochaliodes     斑鱼蛉属     1      Gomphidae        Ophiogomphus    春蜓属       0.777
                  Neoneuromus      齿蛉属      1      Caenidae         Caenis          细蜉属       0.777
Helodidae         Scrites          沼甲科      1      Isonychiidae     Isonychia       等蜉属       0.775
                                                                    Potamomusa
Crambidae                          草螟科      1                                                 0.668
                                                                         midas
Heptageniidae     Thalerosphyrus   短鳃蜉属     1      Ephemeridae      Ephemera        徐氏蜉       0.667
Ephemerellidae    Torleya          大鳃蜉属     1      Gyrinidae        Gyretes         豉甲科       0.665
Hydrobiosidae                      螯石蛾科     1      Baetidae         Acentrella                0.665
Leptophlebiidae   choroterpes      宽基蜉属    0.998   Psephenidae      Psephenus       扁泥甲科      0.557
Tabamidae                                  0.889                    Protohermes     星齿蛉属      0.554
Philopotamidae                     等翅石蛾科   0.889   Pyralidae        Petrophila                0.553




                                                                                   E=25.766
                                                                                   O=13
                                                                                   O/E=0.505
表3. 漓江下游荔浦河期望出现的具体分类单元和实际观测到的分类单元及数量
Baetidae          Baetis           四节蜉属     1      Euphaeidae                        溪蟌科      0.888

Hydropsychidae    Cheumatopsyche   心唇纹石蛾    1      Hydrophilidae    Enochrus         水龟虫科     0.888

Simuliidae                         蚋科       1      Baetidae         Baetiella        花翅蜉属     0.886

Tipulidae                          大蚊       1      Ephemerellidae   Uracanthella     角蜉属      0.873

                  Neochaliodes     斑鱼蛉属     1      Perlidae         Neoperla         新襀属      0.776

                  Neoneuromus      齿蛉属      1      Gomphidae        Ophiogomphus     春蜓属      0.775

Helodidae         Scrites          沼甲科      1      Caenidae         Caenis           细蜉属      0.771
Crambidae                          草螟科      1      Isonychiidae     Isonychia        等蜉属      0.765
Heptageniidae     Thalerosphyrus   短鳃蜉属    0.999                    Potamomusa                0.671

Heptageniidae     Cinygmina        似动蜉属    0.998   Ephemeridae      Ephemera         蜉蝣属      0.665

Hydrobiosidae                      螯石蛾科    0.998   Gyrinidae                         豉甲科      0.66

Ephemerellidae    Torleya          大鳃蜉属    0.997   Baetidae         Acentrella                0.659

Leptophlebiidae   choroterpes      宽基蜉属    0.991   Psephenidae                       扁泥甲科     0.561
Tabanidae                          虻科      0.89                     Protohermes      星齿蛉属     0.55
Philopotamidae                     等翅石蛾科   0.89    Pyralidae                         草螟科      0.546




                                                                                   E=25.698
                                                                                   O=12
                                                                                   O/E=0.467
                                 漓江下游荔浦河
(4)O/E值评价水生态健康的标准

  表3. 漓江及新南威尔士应用预测模型评价水质的分级标准
      漓江预测模型            新南威尔士春秋两季激流预测模型
 健康等级      模型O/E值         Bands    O/E值


 最佳         >0.984         X        >1.1

 健康       0.984-0.787      A      1.11-0.90
           (0.198)                (0.22)

 中等       0.786-0.591      B      0.89-0.67
           (0.198)                (0.22)

 一般        0.59-0.394      C      0.66-0.44
           (0.198)                (0.22)

  差         0.393-0        D       0.43-0
最佳

健康

中等

一般

差
Summary
1.   Benthic macroinvertebrates have been used in
     river health assessment in China.
2.   Benthic Index of biological integrity (B-IBI) was
     a sensitive indicator of stream health and had
     close relationship with watershed land use
     change and water nutrient enrichment in
     Xitiaoxi watershed.
3.   Predictive model might be a good alternative in
     river health assessment in future.
4.   More research on benthos-based assessment
     is required to further enhance its important role
     in the management of aquatic ecosystem.
Acknowledgements
 All of my colleagues and students in our laboratory contributed to this study,
  including Prof. Lianfang Yang, Dr. Changhai Su, Mr. Jie Zhang, Dr. Yong Zhang.

 Many thanks to all my collaborators, including Dr. Yong Cao, Dr. Wei Liu, Dr.
  Desuo Cai, Dr. Lizhu Wang, Dr. John C Morse, Dr. Richard Johnson, Dr. Robert
  M. Hughes, Dr. Yangdong Pan, Dr. Susan K Jackson.

 The studies were supported by NSFC and grants from MWR .

More Related Content

Viewers also liked

Dewha c bruce gray presentation 231109 [compatibil
Dewha c bruce gray presentation 231109 [compatibilDewha c bruce gray presentation 231109 [compatibil
Dewha c bruce gray presentation 231109 [compatibilInternational WaterCentre
 
6 river health assessment yellow river pilot-cand_e
6 river health assessment   yellow river pilot-cand_e6 river health assessment   yellow river pilot-cand_e
6 river health assessment yellow river pilot-cand_eInternational WaterCentre
 
Overview of water panning in queensland, kaylene power
Overview of water panning in queensland, kaylene powerOverview of water panning in queensland, kaylene power
Overview of water panning in queensland, kaylene powerInternational WaterCentre
 
4.1 macro invertebrates as ecological indicators-cn
4.1 macro invertebrates as ecological indicators-cn4.1 macro invertebrates as ecological indicators-cn
4.1 macro invertebrates as ecological indicators-cnInternational WaterCentre
 
3.2 fish survey in songliao river basin c_nonly
3.2 fish survey in songliao river basin c_nonly3.2 fish survey in songliao river basin c_nonly
3.2 fish survey in songliao river basin c_nonlyInternational WaterCentre
 
2.1 hydrological methods for river health assessment cn
2.1 hydrological methods for river health assessment cn2.1 hydrological methods for river health assessment cn
2.1 hydrological methods for river health assessment cnInternational WaterCentre
 
4 river health assessment guiding principles
4 river health assessment   guiding principles4 river health assessment   guiding principles
4 river health assessment guiding principlesInternational WaterCentre
 
Derm iwc chineese delegation wrp 30 nov 2009
Derm iwc chineese delegation  wrp 30 nov 2009Derm iwc chineese delegation  wrp 30 nov 2009
Derm iwc chineese delegation wrp 30 nov 2009International WaterCentre
 
Farwh presentation china delegation 280211 translation
Farwh presentation china delegation 280211 translationFarwh presentation china delegation 280211 translation
Farwh presentation china delegation 280211 translationInternational WaterCentre
 
Arthington iwc e flows for delegation scenario 1 eloha handout
Arthington iwc e flows for delegation scenario 1 eloha handoutArthington iwc e flows for delegation scenario 1 eloha handout
Arthington iwc e flows for delegation scenario 1 eloha handoutInternational WaterCentre
 
7 making use of existing data in river health assessment cn
7 making use of existing data in river health assessment  cn7 making use of existing data in river health assessment  cn
7 making use of existing data in river health assessment cnInternational WaterCentre
 
Dewha les roberts mdba part 2 acedp tour 23 nov 09
Dewha les roberts mdba part 2 acedp  tour 23 nov 09Dewha les roberts mdba part 2 acedp  tour 23 nov 09
Dewha les roberts mdba part 2 acedp tour 23 nov 09International WaterCentre
 
1.2 developing a national river health program in australia en
1.2 developing a national river health program in australia en1.2 developing a national river health program in australia en
1.2 developing a national river health program in australia enInternational WaterCentre
 
Inspect typical water monitoring equipment alan hooper
Inspect typical water monitoring equipment alan hooperInspect typical water monitoring equipment alan hooper
Inspect typical water monitoring equipment alan hooperInternational WaterCentre
 
5.1 sampling issues in river health assessment cn
5.1 sampling issues in river health assessment cn5.1 sampling issues in river health assessment cn
5.1 sampling issues in river health assessment cnInternational WaterCentre
 

Viewers also liked (20)

Dewha c bruce gray presentation 231109 [compatibil
Dewha c bruce gray presentation 231109 [compatibilDewha c bruce gray presentation 231109 [compatibil
Dewha c bruce gray presentation 231109 [compatibil
 
Greg claydon mdb plan overview nov 2010
Greg claydon mdb plan overview nov 2010Greg claydon mdb plan overview nov 2010
Greg claydon mdb plan overview nov 2010
 
6 river health assessment yellow river pilot-cand_e
6 river health assessment   yellow river pilot-cand_e6 river health assessment   yellow river pilot-cand_e
6 river health assessment yellow river pilot-cand_e
 
Overview of water panning in queensland, kaylene power
Overview of water panning in queensland, kaylene powerOverview of water panning in queensland, kaylene power
Overview of water panning in queensland, kaylene power
 
4.1 macro invertebrates as ecological indicators-cn
4.1 macro invertebrates as ecological indicators-cn4.1 macro invertebrates as ecological indicators-cn
4.1 macro invertebrates as ecological indicators-cn
 
3.2 fish survey in songliao river basin c_nonly
3.2 fish survey in songliao river basin c_nonly3.2 fish survey in songliao river basin c_nonly
3.2 fish survey in songliao river basin c_nonly
 
2.1 hydrological methods for river health assessment cn
2.1 hydrological methods for river health assessment cn2.1 hydrological methods for river health assessment cn
2.1 hydrological methods for river health assessment cn
 
T s3 gh3_yangbo sun
T s3 gh3_yangbo sunT s3 gh3_yangbo sun
T s3 gh3_yangbo sun
 
4 river health assessment guiding principles
4 river health assessment   guiding principles4 river health assessment   guiding principles
4 river health assessment guiding principles
 
Acedp csiro and wf hc and sy
Acedp csiro and wf hc and syAcedp csiro and wf hc and sy
Acedp csiro and wf hc and sy
 
Derm iwc chineese delegation wrp 30 nov 2009
Derm iwc chineese delegation  wrp 30 nov 2009Derm iwc chineese delegation  wrp 30 nov 2009
Derm iwc chineese delegation wrp 30 nov 2009
 
Farwh presentation china delegation 280211 translation
Farwh presentation china delegation 280211 translationFarwh presentation china delegation 280211 translation
Farwh presentation china delegation 280211 translation
 
Arthington iwc e flows for delegation scenario 1 eloha handout
Arthington iwc e flows for delegation scenario 1 eloha handoutArthington iwc e flows for delegation scenario 1 eloha handout
Arthington iwc e flows for delegation scenario 1 eloha handout
 
7 making use of existing data in river health assessment cn
7 making use of existing data in river health assessment  cn7 making use of existing data in river health assessment  cn
7 making use of existing data in river health assessment cn
 
Dewha les roberts mdba part 2 acedp tour 23 nov 09
Dewha les roberts mdba part 2 acedp  tour 23 nov 09Dewha les roberts mdba part 2 acedp  tour 23 nov 09
Dewha les roberts mdba part 2 acedp tour 23 nov 09
 
1.2 developing a national river health program in australia en
1.2 developing a national river health program in australia en1.2 developing a national river health program in australia en
1.2 developing a national river health program in australia en
 
Inspect typical water monitoring equipment alan hooper
Inspect typical water monitoring equipment alan hooperInspect typical water monitoring equipment alan hooper
Inspect typical water monitoring equipment alan hooper
 
Arthington iwc e flows principles handout
Arthington iwc e flows principles handoutArthington iwc e flows principles handout
Arthington iwc e flows principles handout
 
5.1 sampling issues in river health assessment cn
5.1 sampling issues in river health assessment cn5.1 sampling issues in river health assessment cn
5.1 sampling issues in river health assessment cn
 
Mep stuart bunn nov10
Mep stuart bunn nov10Mep stuart bunn nov10
Mep stuart bunn nov10
 

More from International WaterCentre

The Value of Measuring the Health of Our Rivers
The Value of Measuring the Health of Our Rivers The Value of Measuring the Health of Our Rivers
The Value of Measuring the Health of Our Rivers International WaterCentre
 
Water Resources Planning and Governance in Highly Contested Rivers
Water Resources Planning and Governance in Highly Contested RiversWater Resources Planning and Governance in Highly Contested Rivers
Water Resources Planning and Governance in Highly Contested RiversInternational WaterCentre
 
B4 c catchment present chinese delegation dec 09
B4 c catchment present chinese delegation dec 09B4 c catchment present chinese delegation dec 09
B4 c catchment present chinese delegation dec 09International WaterCentre
 
Nwc presentation to acedp river health and e flows 23 nov 2009
Nwc presentation to acedp river health and e flows 23 nov 2009Nwc presentation to acedp river health and e flows 23 nov 2009
Nwc presentation to acedp river health and e flows 23 nov 2009International WaterCentre
 
Dewha b seung baek presentation 231109 [compatibil
Dewha b seung baek presentation 231109 [compatibilDewha b seung baek presentation 231109 [compatibil
Dewha b seung baek presentation 231109 [compatibilInternational WaterCentre
 
Dewha a chris schweizer presentation 231109 [comp
Dewha a chris schweizer  presentation 231109 [compDewha a chris schweizer  presentation 231109 [comp
Dewha a chris schweizer presentation 231109 [compInternational WaterCentre
 
Derm iwc chinese delagation_greg long 301109
Derm iwc chinese delagation_greg long 301109Derm iwc chinese delagation_greg long 301109
Derm iwc chinese delagation_greg long 301109International WaterCentre
 
Derm iwc chinese delegation rc presentation 30 nov 09
Derm iwc chinese delegation rc presentation 30 nov 09Derm iwc chinese delegation rc presentation 30 nov 09
Derm iwc chinese delegation rc presentation 30 nov 09International WaterCentre
 
Arthington iwc e flows for delegation scenario 1 drift handout (2)
Arthington iwc e flows for delegation scenario 1 drift handout (2)Arthington iwc e flows for delegation scenario 1 drift handout (2)
Arthington iwc e flows for delegation scenario 1 drift handout (2)International WaterCentre
 
Craes xiaodong-integrated river health assessment
Craes xiaodong-integrated river health assessmentCraes xiaodong-integrated river health assessment
Craes xiaodong-integrated river health assessmentInternational WaterCentre
 

More from International WaterCentre (18)

IWC Master of Integrated Water Management
IWC Master of Integrated Water ManagementIWC Master of Integrated Water Management
IWC Master of Integrated Water Management
 
The Value of Measuring the Health of Our Rivers
The Value of Measuring the Health of Our Rivers The Value of Measuring the Health of Our Rivers
The Value of Measuring the Health of Our Rivers
 
Water Resources Planning and Governance in Highly Contested Rivers
Water Resources Planning and Governance in Highly Contested RiversWater Resources Planning and Governance in Highly Contested Rivers
Water Resources Planning and Governance in Highly Contested Rivers
 
B4 c catchment present chinese delegation dec 09
B4 c catchment present chinese delegation dec 09B4 c catchment present chinese delegation dec 09
B4 c catchment present chinese delegation dec 09
 
Ph key messages
Ph key messagesPh key messages
Ph key messages
 
Sheldon designing ehmp
Sheldon designing ehmpSheldon designing ehmp
Sheldon designing ehmp
 
Ph semat overview
Ph semat overviewPh semat overview
Ph semat overview
 
Ph aem overview
Ph aem overviewPh aem overview
Ph aem overview
 
Nwc presentation to acedp river health and e flows 23 nov 2009
Nwc presentation to acedp river health and e flows 23 nov 2009Nwc presentation to acedp river health and e flows 23 nov 2009
Nwc presentation to acedp river health and e flows 23 nov 2009
 
Dewha b seung baek presentation 231109 [compatibil
Dewha b seung baek presentation 231109 [compatibilDewha b seung baek presentation 231109 [compatibil
Dewha b seung baek presentation 231109 [compatibil
 
Dewha acedp info 231109
Dewha acedp info 231109Dewha acedp info 231109
Dewha acedp info 231109
 
Dewha a chris schweizer presentation 231109 [comp
Dewha a chris schweizer  presentation 231109 [compDewha a chris schweizer  presentation 231109 [comp
Dewha a chris schweizer presentation 231109 [comp
 
Derm iwc chinese delagation_greg long 301109
Derm iwc chinese delagation_greg long 301109Derm iwc chinese delagation_greg long 301109
Derm iwc chinese delagation_greg long 301109
 
Derm iwc chinese delegation rc presentation 30 nov 09
Derm iwc chinese delegation rc presentation 30 nov 09Derm iwc chinese delegation rc presentation 30 nov 09
Derm iwc chinese delegation rc presentation 30 nov 09
 
Ph key messages
Ph key messagesPh key messages
Ph key messages
 
Bcc 20091205 bcc iwc prioritisation
Bcc 20091205  bcc iwc prioritisationBcc 20091205  bcc iwc prioritisation
Bcc 20091205 bcc iwc prioritisation
 
Arthington iwc e flows for delegation scenario 1 drift handout (2)
Arthington iwc e flows for delegation scenario 1 drift handout (2)Arthington iwc e flows for delegation scenario 1 drift handout (2)
Arthington iwc e flows for delegation scenario 1 drift handout (2)
 
Craes xiaodong-integrated river health assessment
Craes xiaodong-integrated river health assessmentCraes xiaodong-integrated river health assessment
Craes xiaodong-integrated river health assessment
 

Wang beixin beijing2010 11-19

  • 1. 利用大型底栖无脊椎动物进行 河流生态系统健康评价 Assessing the River Health Using Benthic Macroinvertebrate Assemblages 王备新 南京农业大学 昆虫系 水生昆虫与溪流生态实验室 Beixin Wang Laboratory of aquatic insects and stream ecology Department of Entomology, Nanjing Agricultural University wangbeixin@njau.edu.cn
  • 3. 一、底栖动物介绍 底栖动物(benthos)是指生活史的全部或大部分时 间生活在水体(溪、河、水库、湖)底部的水生 动物 通常将不能通过500µm(0.5mm)孔径筛网的底栖 动物称为大型底栖无脊椎动物(benthic macroinvertebrate). 大型底栖动物中的无脊椎动物称为大型底栖无脊椎 动物,包括昆虫纲的蜉游、蜻蜓、毛翅目、襀翅 目等,甲壳纲的龙虾、水虱等,软体动物门的蚌、 螺等,环节动物门的水蛭、水蚯蚓等。
  • 4. 扁形动物 线形动物 环节动物—寡毛纲 环节动物—蛭纲 软体动物—瓣腮纲 软体动物—腹足纲
  • 5. 昆虫纲Insecta 襀翅目 毛翅目 蜉蝣目 双翅目 鞘翅目 蜻蜓目
  • 6. 二、底栖动物作为生物指示种的优点 1. 水生态环境质量(水质/生境)的指示性 好且准确,方便水环境管理实践的应用。 (1)极清洁水体指示种(Excellent): 蜉蝣目 Ephemeroptera, 襀翅目Plecoptera, 毛翅目 Trichoptera,脉翅目Neuroptera
  • 9. 2. 生活周期长,活动能力弱,能够反应污染 物的累积效应 大部分1年发生1代或2代 3. 个体大,较易鉴定或识别 绝大多数的类群凭肉眼就可以识别至科。
  • 11. 三、河流健康的底栖动物学评价方法 1. 健康的河流 组成结构(物理、化学、生物)和功能(自然、 生态、社会服务) 2. 河流健康的生物学评价方法 河道特征 能源 生物群落的结 构与功能 化学属性 生物相互作用 水文
  • 12. (1)单个生物指数法 (BI: Biotic Index) (2)生物完整性指数法(IBI) (3)摄食功能类群分析法(Functional Feeding Group)  (4)生物群落的生物属性法(Biological traits) ----功能多样性 (5)落叶分解速率法 (6)预测模型法(RIVPACS)
  • 13. 三、利用底栖动物完整性指数B-IBI评 价河流健康 1. 研究区域概况 西苕溪 (30°23′~31°11′N, 119°14′~120°29′E) 位于太湖上游地区的浙西 水利分区,发源于天目山, 下游是长兴平原。干流总 长157 km,流域面积约 2200 km2,
  • 14. 2. Methods 2.1 Field work  64 sampling sites ( 15 reference sites)  Five surber nets each site  8 environmental variables including water chemistry, habitat variables, watershed land use upstream of sampling sites
  • 15. 2.2 Data analysis Stepwise evaluating 36 candidate metrics.  Crop, forest and urban land use in upstream watershed of every site were analyzed using satellite image and a Digital Elevation Model. Statistical analysis was performed by SPSS 16.0.
  • 16. 3. Results  B-IBI was composed of seven metrics:  Total taxa,  EPT taxa,  Coleoptera%,  Three dominant taxa,  (Hydropsychidae/Trichoptera) %,  Filterers%  Biotic Index (BI). Fig.1 Box-plot of IBI in reference sites (R) and stressed sites (S) Table 1. Narrative interpretations and their numeric criteria (n=64) Excellent Good Fair Poor >4.64 3.15-4.64 2.34~3.15 <2.34
  • 17. Relationship of B-IBI with environmental variables
  • 18. Pearson’s coefficient=-0.431, (p<0.001, n=99) Pearson’s coefficient=0.482, (p<0.001, n=99) Pearson’s coefficient=-0.403, (p<0.001, n=84) Pearson’s coefficient=-0.357, (p=0.001, n=84)
  • 19. Sub-basin Riparian Local entire drainage 200m buffer on each 200m buffer on upstream from side of sample point each side of sample point extending length of sample point the drainage extending 1km network upstream Morley and Karr (2002)
  • 20. Pearson’s coefficient=0.471, (p<0.001, n=101) Pearson’s coefficient=-0.352, (p<0.001, n=101) Fig. 2 the relationship among IBI and the percentage of forest land use, cropland use and urban land use at the sub-basin scale. Pearson’s coefficient=-0.421, (p<0.001, n=101)
  • 21. Pearson’s coefficient=0.655, (p<0.001, n=100) Pearson’s coefficient=-0.460, (p<0.001, n=100) Fig. 3 the relationship among IBI and the percentage of forest land use, cropland use and urban land use at the local scale. Pearson’s coefficient=-0.444, (p<0.001, n=100)
  • 22. Pearson’s coefficient=0.633, (p<0.001, n=100) Pearson’s coefficient=-0.470, (p<0.001, n=100) Fig. 4 the relationship among IBI and the percentage of forest land use, cropland use and urban land use at the riparian scale. Pearson’s coefficient=-0.397, (p<0.001, n=100)
  • 23. 四、 利用RIVPACS模型评价河流健康 1. 原理 生物的分布受自然环境梯度(气候、地形地貌、土壤、 温度、光照、降水量、海拔)等决定。可根据生物分 布的规律与自然环境梯度之间的内在关系来预测生物 可能的分布范围。 2. 理论假设 期望值E(Expected value):监测样点在受干扰前,可能具 有的生物群落组成(物种名录和物种数)。 观测值O(Observed value): 期望出现的生物物种被实际调 查到的数量。 O/E值(O/E value):监测样点偏离“正常位置”的“距 离”,也可以认为是受干扰样点生物多样性丧失的程 度。
  • 24. 3. 发展历史及现状  英国淡水生态研究所(Institute of Freshwater Ecology)于 1984年建立. 至2008年先后开发出了:RIVPACS II、 RIVPACS III和RIVPACS III+ 。  澳大利亚1996年开发了AUSRIVAS 模型,目前已建立了适合 不同生态区使用的48个相对独立的模型。  新西兰1998年建立了溪流健康监测和评价的预测模型 SHMAK(Stream Health Monitoring and Assessment Kit)。  瑞典开发了适合本国溪流使用的SWEPACSRI和湖泊使用的 SWEPACLLI模型。  加拿大的模型是BEAST(BEnthic Assessment of SedimenT)模 型。  美国EPA和各州已开始构建和推广使用预测模型评价水体生 态质量。  目前O/E指标是欧盟水框架计划最主要的生物评价指标之一。
  • 26. 4、RIVPACS模型的构建 4.1 研究区域概况 • 漓江为珠江的上游河段,发源于兴安县猫儿山, 止于平乐,平乐以下江段称为桂江。漓江全长 164km,总流域面积6050km2 ,市区内长度 49.3km。 • 漓江流域属于亚热带温润季风气候,年均降雨量 达到1627mm,受季风影响,丰枯水季明显。
  • 27. 4.2 材料与方法 4.2.1 理化、生境 和生物数据采集 2008年3月 35个样 点(20个样点) 2008年10月 39个样 点(28个样点)。 3月和10月皆采样的 样点数15。 Fig. 1 Benthos sampling sites in Lijiang River in Mar. (left) and Oct. (Right)
  • 28. 4. 2. 2 构建RIVPACS模型的步骤 (1)根据生物数据对样点进行分组, (2)判别分析的方法确定与生物分组结果 一致的一组环境变量,建立判别函数, (3)预测监测点属于不同组的概率, (4)计算不同分类单元在监测点可能出现 的概率, (5)确定在监测点期望出现的具体的分类 单元(物种)。
  • 29.  环境数据 经纬度、海拔、河流的水面宽度、深度、平均流 速、最大流速 、pH、电导率、溶解氧、温度、 COD 、TN、TP等、底质组成等。  生物数据 底栖动物群落数据。
  • 30. 4.3 研究结果 参照点分组结果 Fig.2 Cluster results of reference sites using BC index
  • 32. 表1. 漓江源头猫儿山期望出现的具体分类单元和实际观测到的分类单元及数量 Baetidae Baetis 四节蜉属 1 Ephemerellidae Cincticostella 带肋蜉属 0.802 Hydropsychidae Cheumatopsyche 纹石蛾属 1 Nemouridae Nemoura 叉襀属 0.801 Simuliidae 蚋科 1 Baetidae Baetiella 花翅蜉属 0.8 Tipulidae 大蚊 1 Leptophlebiidae facialis 宽基蜉属 0.796 Neochaliodes 斑鱼蛉属 1 Leuctridae Perlomyla 长卷襀属 0.796 Neoneuromus 齿蛉属 1 Heptageniidae Cinygmina 似动蜉属 0.607 Helodidae 沼甲科 1 Ephemerellidae Torleya 大鳃蜉属 0.605 Parapoynx crisonalis 草螟科 1 Euphaeidae 溪蟌科 0.605 Thalerosphyrus 短鳃蜉属 0.999 Hydrophilidae 水龟虫科 0.605 Philopotamidae 等翅石蛾科 0.999 Psephenidae 扁泥甲科 0.604 Elmidae 长角泥甲科 0.995 Gomphidae 春蜓属 0.602 Tabanidae 虻科 0.803 涡虫 0.593 Hydrobiosidae 螯石蛾科 0.802 E=20.8 O=22 O/E=1.057 漓江源头猫儿山
  • 33. 表2. 漓江中游兴坪期望出现的具体分类单元和实际观测到的分类单元及数量 Heptageniidae Cinygmina 似动蜉属 1 Euphaeidae 溪蟌科 0.889 Baetidae Baetis 四节蜉属 1 Hydrophilidae 水龟虫科 0.889 Hydropsychidae Cheumatopsyche 纹石蛾 1 Baetidae Baetiella 花翅蜉属 0.888 Simuliidae 蚋科 1 Ephemerellidae Uracanthella 角蜉属 0.886 Tipulidae 大蚊 1 Perlidae Neoperla 新襀属 0.778 Neochaliodes 斑鱼蛉属 1 Gomphidae Ophiogomphus 春蜓属 0.777 Neoneuromus 齿蛉属 1 Caenidae Caenis 细蜉属 0.777 Helodidae Scrites 沼甲科 1 Isonychiidae Isonychia 等蜉属 0.775 Potamomusa Crambidae 草螟科 1 0.668 midas Heptageniidae Thalerosphyrus 短鳃蜉属 1 Ephemeridae Ephemera 徐氏蜉 0.667 Ephemerellidae Torleya 大鳃蜉属 1 Gyrinidae Gyretes 豉甲科 0.665 Hydrobiosidae 螯石蛾科 1 Baetidae Acentrella 0.665 Leptophlebiidae choroterpes 宽基蜉属 0.998 Psephenidae Psephenus 扁泥甲科 0.557 Tabamidae 0.889 Protohermes 星齿蛉属 0.554 Philopotamidae 等翅石蛾科 0.889 Pyralidae Petrophila 0.553 E=25.766 O=13 O/E=0.505
  • 34. 表3. 漓江下游荔浦河期望出现的具体分类单元和实际观测到的分类单元及数量 Baetidae Baetis 四节蜉属 1 Euphaeidae 溪蟌科 0.888 Hydropsychidae Cheumatopsyche 心唇纹石蛾 1 Hydrophilidae Enochrus 水龟虫科 0.888 Simuliidae 蚋科 1 Baetidae Baetiella 花翅蜉属 0.886 Tipulidae 大蚊 1 Ephemerellidae Uracanthella 角蜉属 0.873 Neochaliodes 斑鱼蛉属 1 Perlidae Neoperla 新襀属 0.776 Neoneuromus 齿蛉属 1 Gomphidae Ophiogomphus 春蜓属 0.775 Helodidae Scrites 沼甲科 1 Caenidae Caenis 细蜉属 0.771 Crambidae 草螟科 1 Isonychiidae Isonychia 等蜉属 0.765 Heptageniidae Thalerosphyrus 短鳃蜉属 0.999 Potamomusa 0.671 Heptageniidae Cinygmina 似动蜉属 0.998 Ephemeridae Ephemera 蜉蝣属 0.665 Hydrobiosidae 螯石蛾科 0.998 Gyrinidae 豉甲科 0.66 Ephemerellidae Torleya 大鳃蜉属 0.997 Baetidae Acentrella 0.659 Leptophlebiidae choroterpes 宽基蜉属 0.991 Psephenidae 扁泥甲科 0.561 Tabanidae 虻科 0.89 Protohermes 星齿蛉属 0.55 Philopotamidae 等翅石蛾科 0.89 Pyralidae 草螟科 0.546 E=25.698 O=12 O/E=0.467 漓江下游荔浦河
  • 35. (4)O/E值评价水生态健康的标准 表3. 漓江及新南威尔士应用预测模型评价水质的分级标准 漓江预测模型 新南威尔士春秋两季激流预测模型 健康等级 模型O/E值 Bands O/E值 最佳 >0.984 X >1.1 健康 0.984-0.787 A 1.11-0.90 (0.198) (0.22) 中等 0.786-0.591 B 0.89-0.67 (0.198) (0.22) 一般 0.59-0.394 C 0.66-0.44 (0.198) (0.22) 差 0.393-0 D 0.43-0
  • 37. Summary 1. Benthic macroinvertebrates have been used in river health assessment in China. 2. Benthic Index of biological integrity (B-IBI) was a sensitive indicator of stream health and had close relationship with watershed land use change and water nutrient enrichment in Xitiaoxi watershed. 3. Predictive model might be a good alternative in river health assessment in future. 4. More research on benthos-based assessment is required to further enhance its important role in the management of aquatic ecosystem.
  • 38. Acknowledgements  All of my colleagues and students in our laboratory contributed to this study, including Prof. Lianfang Yang, Dr. Changhai Su, Mr. Jie Zhang, Dr. Yong Zhang.  Many thanks to all my collaborators, including Dr. Yong Cao, Dr. Wei Liu, Dr. Desuo Cai, Dr. Lizhu Wang, Dr. John C Morse, Dr. Richard Johnson, Dr. Robert M. Hughes, Dr. Yangdong Pan, Dr. Susan K Jackson.  The studies were supported by NSFC and grants from MWR .