PRESENTATION OVERVIEW <ul><li>THE MARKET </li></ul><ul><li>PRINCIPLE POWER </li></ul><ul><li>WHY OFFSHORE WIND? </li></ul>...
1970: 3.7 BILLION PEOPLE Source: NASA
2010: 7 BILLION PEOPLE Source: NASA
THE MARKET <ul><li>UNADDRESSED MARKETS </li></ul><ul><ul><li>Coastal areas with high renewable energy demand </li></ul></u...
PRINCIPLE POWER INC. <ul><li>ESTABLISHED IN OCTOBER 2007 </li></ul><ul><ul><li>10 employees </li></ul></ul><ul><ul><li>Loc...
WHY OFFSHORE WIND? <ul><li>WHY OFFSHORE WIND? </li></ul><ul><ul><li>Higher wind resource and less turbulence </li></ul></u...
OFFSHORE WIND RESOURCE Source: Willet Kempton, U of DE Delaware 20 miles Offshore Nearshore Onshore
OFFSHORE WIND – PRIMARY MARKET POTENTIAL AND RESOURCE Source:  Risø National Laboratory, Roskilde, Denmark Source:  US Nat...
OFFSHORE WIND – CURRENT DEVELOPMENT
WATER DEPTH ECONOMICS Semi-Sub Monopile 0-30m, 1-2 MW Jacket/Tripod 25-50m, 2-5 MW Floating Structures >50m, 5-10MW Spar T...
OFFSHORE WIND CHALLENGES <ul><li>FIXED FOUNDATIONS </li></ul><ul><ul><li>Water depth </li></ul></ul><ul><ul><ul><li>Overtu...
THE WINDFLOAT <ul><li>TURBINE AGNOSTIC </li></ul><ul><ul><li>Conventional (3-blade, upwind) </li></ul></ul><ul><ul><li>No ...
WINDFLOAT  –  DEVELOPMENT HISTORY EDP and Principle Power sign MOA for phased development of WindFloat technology and comm...
LARGE OFFSHORE TURBINE SUPPLIERS Product & Track Record Development Plan Product/size (MW) Drive type # offshore installed...
FLOATING  OFFSHORE WIND CONCEPTS <ul><li>DEVELOPMENT TIMELINE </li></ul><ul><li>2007 </li></ul><ul><ul><li>Statoil Hydro a...
SYNERGIES WITH OIL & GAS Beatrice Blue H <ul><li>An industry of Experience… </li></ul><ul><li>Floating structures date bac...
PATH TO COMERICIALISATION <ul><li>WINDFLOAT SPECIFIC COST </li></ul><ul><ul><li>Reduction in steel weight – application of...
MARKET DEVELOPMENT PROJECTS <ul><li>PORTUGAL – 150 MW </li></ul><ul><ul><li>WINDPLUS, SA – JV between EDP, PPI & A. Silva ...
IN SUMMARY - WINDFLOAT OFFERS: <ul><li>LOWER DESIGN & DATA COLLECTION COSTS </li></ul><ul><ul><li>Farm design rather than ...
THANK YOU
WINDFLOAT MODEL TEST OBJECTIVES <ul><ul><li>Verify numerical model and platform motion response  </li></ul></ul><ul><ul><l...
Upcoming SlideShare
Loading in...5
×

G.E.T. Smart - Smart Renewables: Principal Power Presentation

1,633

Published on

Published in: Education
1 Comment
2 Likes
Statistics
Notes
No Downloads
Views
Total Views
1,633
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
118
Comments
1
Likes
2
Embeds 0
No embeds

No notes for slide

Transcript of "G.E.T. Smart - Smart Renewables: Principal Power Presentation"

  1. 2. PRESENTATION OVERVIEW <ul><li>THE MARKET </li></ul><ul><li>PRINCIPLE POWER </li></ul><ul><li>WHY OFFSHORE WIND? </li></ul><ul><li>CHALLENGES IN OFFSHORE WIND </li></ul><ul><li>THE WINDFLOAT </li></ul><ul><li>MARKET DEVELOPMENT PROJECTS </li></ul><ul><li>REVIEW/PREDICTIONS </li></ul>
  2. 3. 1970: 3.7 BILLION PEOPLE Source: NASA
  3. 4. 2010: 7 BILLION PEOPLE Source: NASA
  4. 5. THE MARKET <ul><li>UNADDRESSED MARKETS </li></ul><ul><ul><li>Coastal areas with high renewable energy demand </li></ul></ul><ul><ul><li>Best resource is deep-water offshore wind </li></ul></ul><ul><li>TARGET LOCATIONS </li></ul><ul><ul><li>Coasts of Portugal, France, Spain, the UK and Japan </li></ul></ul><ul><ul><li>United States </li></ul></ul><ul><ul><ul><li>West Coast </li></ul></ul></ul><ul><ul><ul><li>Maine </li></ul></ul></ul><ul><ul><ul><li>Great Lakes </li></ul></ul></ul><ul><ul><li>North Sea </li></ul></ul><ul><li>MARKET POTENTIAL </li></ul><ul><ul><li>> 1,000 GW </li></ul></ul>
  5. 6. PRINCIPLE POWER INC. <ul><li>ESTABLISHED IN OCTOBER 2007 </li></ul><ul><ul><li>10 employees </li></ul></ul><ul><ul><li>Locations in US and Europe </li></ul></ul><ul><li>MISSION </li></ul><ul><ul><li>Develop and commercialize the WindFloat </li></ul></ul><ul><li>TECHNOLOGY </li></ul><ul><ul><li>Core IP patented, WindFloat system patent pending </li></ul></ul><ul><li>MARKET </li></ul><ul><ul><li>Intermediate and deep-water wind sites - Presently untapped </li></ul></ul><ul><ul><li>Natural evolution of offshore wind development </li></ul></ul>Deep-water offshore wind is inevitable
  6. 7. WHY OFFSHORE WIND? <ul><li>WHY OFFSHORE WIND? </li></ul><ul><ul><li>Higher wind resource and less turbulence </li></ul></ul><ul><ul><li>Large ocean areas available </li></ul></ul><ul><ul><li>Onshore sites are scarce </li></ul></ul><ul><ul><li>Capacity of offshore wind is theoretically unlimited </li></ul></ul><ul><li>WHY FLOATING OFFSHORE WIND? </li></ul><ul><ul><li>Limited shallow water sites </li></ul></ul><ul><ul><li>Majority of resource in deep water </li></ul></ul><ul><ul><li>Large ocean areas available </li></ul></ul><ul><ul><li>Less restrictions for offshore deployment and reduced visual impact </li></ul></ul><ul><ul><li>>2 TW resource potential in primary markets </li></ul></ul>
  7. 8. OFFSHORE WIND RESOURCE Source: Willet Kempton, U of DE Delaware 20 miles Offshore Nearshore Onshore
  8. 9. OFFSHORE WIND – PRIMARY MARKET POTENTIAL AND RESOURCE Source: Risø National Laboratory, Roskilde, Denmark Source: US National Renewable Energy Lab
  9. 10. OFFSHORE WIND – CURRENT DEVELOPMENT
  10. 11. WATER DEPTH ECONOMICS Semi-Sub Monopile 0-30m, 1-2 MW Jacket/Tripod 25-50m, 2-5 MW Floating Structures >50m, 5-10MW Spar TLP Floating Structures >120m, 5-10MW Water Depth
  11. 12. OFFSHORE WIND CHALLENGES <ul><li>FIXED FOUNDATIONS </li></ul><ul><ul><li>Water depth </li></ul></ul><ul><ul><ul><li>Overturning of moment of wind turbines to be mitigated by the foundation </li></ul></ul></ul><ul><ul><li>Installation of wind turbines offshore </li></ul></ul><ul><ul><ul><li>Requires large installation vessels </li></ul></ul></ul><ul><ul><ul><li>Acceptable weather window (sea state limitations) </li></ul></ul></ul><ul><li>FLOATING FOUNDATIONS </li></ul><ul><ul><li>Pitch motion </li></ul></ul><ul><ul><ul><li>pitch acceleration lead to structural fatigue (gyroscopic moment induced yaw) </li></ul></ul></ul><ul><ul><li>Installation and Commissioning scenarios </li></ul></ul><ul><ul><ul><li>Need to “keep it simple” influences design significantly </li></ul></ul></ul>
  12. 13. THE WINDFLOAT <ul><li>TURBINE AGNOSTIC </li></ul><ul><ul><li>Conventional (3-blade, upwind) </li></ul></ul><ul><ul><li>No major redesign </li></ul></ul><ul><li>HIGH STABILITY PERFORMANCE </li></ul><ul><ul><li>Static Stability - Water Ballast </li></ul></ul><ul><ul><li>Dynamic Stability - Heave Plates </li></ul></ul><ul><ul><li>Efficiency – Closed-loop Active Ballast System </li></ul></ul><ul><li>DEPTH FLEXIBILITY (>50M) </li></ul><ul><li>ASSEMBLY & INSTALLATION </li></ul><ul><ul><li>Port assembly </li></ul></ul><ul><ul><li>No specialized vessels required, conventional tugs </li></ul></ul><ul><ul><li>Industry standard mooring equipment </li></ul></ul>
  13. 14. WINDFLOAT – DEVELOPMENT HISTORY EDP and Principle Power sign MOA for phased development of WindFloat technology and commercial deployment of a wind farm up to 150MW Wave tank testing of 1:80 th scale Minifloat III concept at Oceanic MI&T performs Minifloat proof of concept model tests Wave tank testing of Minifloat I & II concept MI&T files Minifloat patent 1 Wave tank testing of 1:96 th scale Minifloat IV concept at University of California, Berkeley tow tank Minifloat patent 1 issued US7086809, Minifloat patent 2 filed Wave tank testing of 1:67 th scale WindFloat model at University of California, Berkeley tow tank Principle Power exclusively licenses WindFloat intellectual property from MI&T Minifloat patent 2 isssued US7281881 EDP initiates the WindFloat Project with Phase-0, a full-scale WindFloat unit with a non-grid connected sub-megawatt wind turbine in the Algarve region Wave tank testing of 1:96 th scale WindFloat model at University of California, Berkeley tow tank Principle Power purchases outright all intellectual property for WindFloat from MI&T
  14. 15. LARGE OFFSHORE TURBINE SUPPLIERS Product & Track Record Development Plan Product/size (MW) Drive type # offshore installed 2008 2009 2010 2011 Siemens S90 - 3.6 Multi stage gearbox 83 Serial  S90 - 3.6 Direct drive Prototype 0-series 6 Direct drive Prototype 0-series 10 Direct drive Prototype Vestas V90 – 3 Multi stage gearbox 332 Serial  5+ Multi stage gearbox Prototype REpower 5M – 5 Multi stage gearbox 2 Serial  6 Multi stage gearbox Prototype 0-series Multibrid M5000- 5 Single stage gearbox 0-series Serial  BARD 5 Multi stage gearbox Prototype 0-series Serial  Clipper 7 - 10 Planetary gearbox Prototype XEMC Darwind DD115 – 5 Direct drive Prototype GE (ScanWind) 4 Direct drive
  15. 16. FLOATING OFFSHORE WIND CONCEPTS <ul><li>DEVELOPMENT TIMELINE </li></ul><ul><li>2007 </li></ul><ul><ul><li>Statoil Hydro and Siemens sign agreement for Hywind project </li></ul></ul><ul><ul><li>Sway raises €16.5M in private placement </li></ul></ul><ul><li>2008 </li></ul><ul><ul><li>Blue H half-scale prototype installation </li></ul></ul><ul><ul><li>EDP and Principle Power partner to deploy WindFloat technology </li></ul></ul><ul><li>2009 </li></ul><ul><ul><li>Hywind full-scale prototype installation with 2.3MW turbine </li></ul></ul><ul><li>2011 </li></ul><ul><ul><li>Principle Power to deploy full scale WindFloat off Western Portuguese coast. </li></ul></ul>Trade name WindFloat Hywind Blue H Sway Developer Principle Power (US) Statoil Hydro (NO) Blue H (NL) Norwegian consortium (NO) Foundation type Semi-submersible (moored 4-6 lines) Spar (moored 3 lines) Tension Leg Platform Hybrid Spar/TLP (single tendon) Water Depths > 40 m >100 m > 40 m 100 m - 400 m Turbine 3-10MW Existing technology! 2.3 MW Siemens 2 bladed “Omega” under development Multibrid Downwind under development Installation Tow out fully commissioned Dedicated vessel- tow out and upending Tow out on buoyancy modules until connection Dedicated vessel- tow out and upending Turbine installation Onshore Offshore Onshore Offshore Strengths Dynamic motions, installation, overall simplicity of design Existing turbine and hull technology, well funded First sub-scale demo deployed Low steel weight Challenges Steel cost Dynamic motions, installation Mooring cost, turbine design, turbine coupling with tendons Installation and maintenance, downwind 3-blade turbine Stage of Development Ready for prototype testing Full-scale prototype installed in 2009 Half-scale prototype installed in 2008 Development of the concept
  16. 17. SYNERGIES WITH OIL & GAS Beatrice Blue H <ul><li>An industry of Experience… </li></ul><ul><li>Floating structures date back to 1977 </li></ul><ul><li>New technology developments have traditionally been based on new needs, coming from resources identification </li></ul>WindFloat Hywind
  17. 18. PATH TO COMERICIALISATION <ul><li>WINDFLOAT SPECIFIC COST </li></ul><ul><ul><li>Reduction in steel weight – application of wind industry safety factors and weather criteria </li></ul></ul><ul><ul><li>Optimization of platform to turbine aspect ratio (more motion) </li></ul></ul><ul><ul><li>Tow vessels on long term contract </li></ul></ul><ul><ul><li>Fabrication methods – reducing manual welding </li></ul></ul><ul><ul><li>Engineering and project management </li></ul></ul>≈ 40% Cost Reduction Beatrice Alpha Ventus
  18. 19. MARKET DEVELOPMENT PROJECTS <ul><li>PORTUGAL – 150 MW </li></ul><ul><ul><li>WINDPLUS, SA – JV between EDP, PPI & A. Silva Matos </li></ul></ul><ul><ul><li>Pilot installation funding – EDP & Portuguese Government </li></ul></ul><ul><ul><li>Three phase build-out to 150MW – Pilot, pre-commercial, commercial </li></ul></ul><ul><li>TILLAMOOK, OR, USA – 150 MW </li></ul><ul><ul><li>Initial permitting activities </li></ul></ul><ul><ul><li>MOA with TIDE </li></ul></ul><ul><ul><li>MOA with Tillamook PUD </li></ul></ul><ul><ul><li>Identifying project developer </li></ul></ul><ul><li>MAINE, USA – 150 MW </li></ul><ul><ul><li>Selecting site / project developer </li></ul></ul>
  19. 20. IN SUMMARY - WINDFLOAT OFFERS: <ul><li>LOWER DESIGN & DATA COLLECTION COSTS </li></ul><ul><ul><li>Farm design rather than individual unit </li></ul></ul><ul><ul><li>Area wide data, rather than unit specific </li></ul></ul><ul><li>MINIMIZED OCEAN FLOOR & ENVIRONMENTAL IMPACTS </li></ul><ul><ul><li>Use of conventional anchors </li></ul></ul><ul><ul><li>Due to reduced bio activity in >50 m depth </li></ul></ul><ul><li>LOWER INSTALLATION & INSURANCE COSTS </li></ul><ul><ul><li>Complete unit shore assembly, No need for heavy lift vessels (Jones Act) </li></ul></ul><ul><ul><li>Reduced weather related dependency </li></ul></ul><ul><li>ECONOMIC BENEFITS </li></ul><ul><ul><li>Local employment and economic growth in coastal communities </li></ul></ul><ul><li>FUTURE PREDICTIONS </li></ul><ul><ul><li>Industry will continue to chase three variables: higher capacity resource, proximity to load centers and efficiency of production </li></ul></ul><ul><ul><li>Ultimate goal of project economic efficiency </li></ul></ul>
  20. 21. THANK YOU
  21. 22. WINDFLOAT MODEL TEST OBJECTIVES <ul><ul><li>Verify numerical model and platform motion response </li></ul></ul><ul><ul><li>Determine clearance between extreme wave crest and platform deck </li></ul></ul><ul><ul><li>Measure interactions between wave-induced dynamics and tower vibrations </li></ul></ul><ul><ul><li>Measure hydrodynamic loading on the heave plate </li></ul></ul><ul><ul><li>Confirm numerical predictions of mooring line tension </li></ul></ul><ul><ul><li>Determine platform damping in pitch/roll </li></ul></ul>
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×