Graph databases
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

Graph databases

on

  • 481 views

My presentation about introduction to graph database.

My presentation about introduction to graph database.

Statistics

Views

Total Views
481
Views on SlideShare
481
Embed Views
0

Actions

Likes
0
Downloads
7
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment
  • An undirected graph is one in which edges have no orientation. The edge (a, b) is identical to the edge (b, a).A directed graph or digraph is an ordered pair D = (V, A)A pseudo graph is a graph with loopsA multi graph allows for multiple edges between nodesA hyper graph allows an edge to join more than two nodes
  • An undirected graph is one in which edges have no orientation. The edge (a, b) is identical to the edge (b, a).A directed graph or digraph is an ordered pair D = (V, A)A pseudo graph is a graph with loopsA multi graph allows for multiple edges between nodesA hyper graph allows an edge to join more than two nodes

Graph databases Presentation Transcript

  • 1. Graph Databases Introduction & Concepts Vinoth Kannan vinoth.kannan@widas.de 1
  • 2. Agenda Overview of NoSQL What is a Graph Database Concept Some Use Cases Conclusion 2
  • 3. Overview of NoSQL NoSQL Not Only SQL 3
  • 4. Types of NoSQL Key Value Stores Column Family Document Databases Graph Databases 4
  • 5. Key-Value Store Types of NoSQL Based on Amazon’s Dynamo platform: Highly Available Key-Value Store Data Model: Global key-value mapping Big scalable HashMap Highly fault tolerant Examples: Redis, Riak, Voldemort, Tokyo 5
  • 6. Column Family NoSQL Types Based on BigTable: Google’s Distributed Storage System for Structured Data Data Model: A big table, with column families Map Reduce for querying/processing Every row can have its own Schema Examples: HBase, HyperTable, Cassandra 6
  • 7. Document Databases NoSQL Types Based on Lotus Notes Data Model: A collection of documents A document is a key value collection Index-centric, lots of map-reduce Examples: CouchDB, MongoDB 7
  • 8. Graph Databases NoSQL Types Based on Euler & Graph Theory Data Model: Nodes and Relationships Examples: Neo4j, OrientDB, InfiniteGraph, AllegroGraph, Titan 8
  • 9. NoSQL Performace Complexity vs Size ……………….. Graph Store Data Complexity Document Store CF Store K-V Store RDBMS Data Size 9
  • 10. What is a Graph? An abstract representation of a set of objects where some pairs are connected by links. Name Object (Vertex, Node) Link (Edge, Arc, Relationship)
  • 11. Different Types of Graphs Graph Type Undirected Graph Directed Graph Pseudo Graph Multi Graph Hyper Graph Diagram
  • 12. Different Types of Graphs Graph Type Weighted Graph Labeled Graph Property Graph Diagram
  • 13. What is a Graph Database? A database with an explicit graph structure Each node knows its adjacent nodes Even as the number of nodes increases, the cost of a local step (or hop) remains the same Plus an Index for lookups Transactional based
  • 14. Compared to Relational Databases Optimized for aggregation Optimized for connections
  • 15. Compared to Key Value Stores Optimized for simple look-ups Optimized for traversing connected data
  • 16. Compared to Key Value Stores Optimized for “trees” of data Optimized for seeing the forest and the trees, and the branches, and the trunks
  • 17. Friends Recommendation Wondered How ? 17
  • 18. Graph Databases Basic Concepts – Social Data Name= “Elena” Name= “Vinoth” City= “PF “ Name= “Emanuel” Name= “Joachim” 3 FRIEND 1 6 12 FRIEND RELATED Since : 2012 2 Name= “Thomas” City= “Wimsheim 9 ” Name= “Y” 18
  • 19. Graph Search Feature of FB Wondered How ? 19
  • 20. Graph Databases Basic Concepts – Connection based Name= “Elena” Name= “Vinoth” City= “PF ” Name= “WIDAS” 3 1 6 FRIEND Since : 2012 2 Name= “Thomas” City= “Wimsheim ” 20
  • 21. Graph Databases Basic Concepts – Spatial Data Name= “Stuttgart Hbf” Lat = 48.460 Lon = 9.1040 Name= “WIDAS” Lat = 48.510 Lon = 8.790 Name= “…..” Lat = 41.000 Lon = 9.840 distance: 24 km 3 ROAD 1 ROAD 6 12 distance: 51 km ROAD distance: 12 km 2 Name= “Pforzheim Cafe” Lat = 48.530 Lon = 8.420 9 21
  • 22. Power of Graph Database Social Data + Spatial Data 22
  • 23. Graph Databases Basic Concepts – Social and Spatial Data Name= “Stuttgart” Lat = 41.000 Lon = 40.840 Name= “WIDAS” Lat = 41.000 Lon = 40.840 Name= Thomas Travel_rating = expert distance: 24 km 3 Name= Elena Travel_rating = novice FRIENDS 1 ROAD 6 12 distance: 51 km distance: 12 km 2 Name= “Pforzheim” Lat = 41.000 Lon = 40.840 23
  • 24. Some Use Cases Highly connected data (social networks) Recommendations (e-commerce) Path Finding (how do I know you?) Anamoly Detection (Financial Services)
  • 25. FDS System with GraphDB Name= “Vinoth” IBAN= “DE1234 Name= “Xing Lee” Country = “China” IBAN = “XXXXXX” ” Name= “ATM@Romania” Lat = 41.000 Lon = 40.840 TRANSFERS 3 6 1 amount: € 4500 LIVES 2 Name= “Pforzheim” Lat = 41.000 Lon = 40.840 MARKED 9 Name= “Blacklist” 25
  • 26. Thank you!