<ul><ul><li>ENSC 835: COMMUNICATION NETWORKS </li></ul></ul><ul><ul><li>CMPT 885: SPECIAL TOPICS: COMMUNICATION NETWORKS <...
Roadmap <ul><li>Introduction </li></ul><ul><li>Related Work  </li></ul><ul><li>Problem Description </li></ul><ul><li>Model...
Motivation and Overview <ul><li>Use already existing IP infrastructure </li></ul><ul><li>Minimal deployment cost </li></ul...
Introduction (continues)‏ <ul><li>Typical scenario: plant/warehouse floor (wireless), and office floor (desktops)‏ </li></...
Related Work <ul><li>X. Cao, G. Bai, and C. Williamson, “Media streaming performance in a portable wireless classroom netw...
Related Work <ul><li>Salah, K., and Alkhoraidly, A., “An Opnet-based Simulation Approach for Deploying VoIP”  </li></ul><u...
Related Work <ul><li>[1] K. Salah, “Analytic approach for deploying desktop videoconferencing,”  IEE Proceedings Communica...
Problem Description: Technical Details <ul><li>Want to extend existing desktop conferencing simulation [1] to include wire...
Model: Typical Office Environment
Model: Typical Office with Wireless Clients <ul><li>Floor 1: Plant/warehouse floor with equipment  </li></ul><ul><li>Floor...
Choice of parameters: H.323  <ul><li>Widely implemented  by voice and videoconferencing equipment manufacturers </li></ul>...
Choice of parameters: G.711  <ul><li>Popular audio encoder scheme </li></ul><ul><li>Payload of VoIP: 160  </li></ul><ul><l...
Scenarios <ul><li>Scenario 1: 802.11b (OPNET), increasing # calls model </li></ul><ul><li>Scenario 2: 802.11g (OPNET), inc...
Scenario 1: 802.11b – Global pps <ul><li>IP background traffic starts at 40s, VConf at 70s </li></ul><ul><li>Tx/Rx pps mis...
Scenario 1: 802.11b <ul><li>Wireless LAN’s Dropped data (bits/s), Delay (s) and Media access delay (s)‏ </li></ul>
Scenario 1: 802.11b <ul><li>Wireless LAN’s Queue Size (packets)‏ </li></ul>
Scenario1: Discussion <ul><li># Video conferencing calls supported: </li></ul><ul><ul><li>Traffic Rx/Tx Mismatch at 1m 38s...
Scenario 1: 802.11b <ul><li>Wireless LAN’s Load, Throughput and Data Dropped (bits/s)‏ </li></ul>
Scenario1: Discussion <ul><li>802.11b reaches the typical throughput of 6 Mbps (max theoretical rate is 11Mbps)‏ </li></ul...
Scenario 2: 802.11g <ul><li>Videoconferencing traffic sent/received (packets/sec)‏ </li></ul>
Scenario 2: 802.11g <ul><li>Videoconferencing traffic sent/received (bytes/sec)‏ </li></ul>
Scenario 2: 802.11g <ul><li>Wireless LAN’s Data Dropped (bits/s), Queue size (packets)‏ </li></ul>
Scenario 2: Discussion <ul><li># Video conferencing calls supported: </li></ul><ul><ul><li>Traffic Rx/Tx Mismatch at 2m 48...
Scenario 2: 802.11g <ul><li>Wireless LAN’s Load, Throughput, Data Dropped (bits/s)‏ </li></ul>
Scenario 2: Discussion <ul><li>The modulation scheme is OFDM with data rates of up to 54 Mbit/s </li></ul><ul><li>Higher s...
Scenario 3: Further Analysis <ul><li># Videoconferencing calls: </li></ul><ul><ul><li>First floor 802.11b: 28 </li></ul></...
Scenario 3: 802.11b Throughput <ul><li>Verify the validity of Scenario 1 </li></ul><ul><li>Used IT Guru for a quicker set ...
Scenario 3: 802.11b revisited: IT Guru
Scenario 3: 9 wireless, 1 desktop <ul><li>Note the mismatch between sent and received VC traffic </li></ul>
Scenario 3: 8 wireless, 1 desktop <ul><li>Videoconferencing traffic sent = received </li></ul>
Results <ul><li>Limit for 802.11b is 9 video calls (all wireless)!  </li></ul><ul><li>Agrees with X. Cao’s results (“Media...
Conclusions <ul><li>This study analyzed a deployment of videoconferencing clients over an existing IP infrastructure </li>...
Future Work <ul><li>Compare with 802.11e, 802.11n </li></ul><ul><li>Add wireless to all floors </li></ul><ul><li>Add backg...
References <ul><li>[1] K. Salah, “Analytic approach for deploying desktop videoconferencing,”  IEE Proceedings Communicati...
Upcoming SlideShare
Loading in …5
×

Download It

407 views
371 views

Published on

0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
407
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
9
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Download It

  1. 1. <ul><ul><li>ENSC 835: COMMUNICATION NETWORKS </li></ul></ul><ul><ul><li>CMPT 885: SPECIAL TOPICS: COMMUNICATION NETWORKS </li></ul></ul><ul><ul><li>FINAL PROJECT PRESENTATION </li></ul></ul><ul><ul><li>Spring 2008 </li></ul></ul><ul><ul><li>Deployment of Mobile and Fixed Video Conferencing over an Existing IP Infrastructure </li></ul></ul><ul><ul><li>Victor Gusev </li></ul></ul><ul><ul><li>http://www.sfu.ca/~vga9/ensc835.htm </li></ul></ul><ul><ul><li>[email_address] </li></ul></ul>
  2. 2. Roadmap <ul><li>Introduction </li></ul><ul><li>Related Work </li></ul><ul><li>Problem Description </li></ul><ul><li>Models </li></ul><ul><li>Simulation Study </li></ul><ul><li>Results and Discussions </li></ul><ul><li>Conclusions and Future Improvements </li></ul><ul><li>References </li></ul>
  3. 3. Motivation and Overview <ul><li>Use already existing IP infrastructure </li></ul><ul><li>Minimal deployment cost </li></ul><ul><li>Video conferencing deployment – not yet analysed for WiFi in OPNET </li></ul><ul><li>Commercial interest (simulate before investing time and money into hardware/software setup)‏ </li></ul><ul><li>Research interest (optimization, capacity)‏ </li></ul>
  4. 4. Introduction (continues)‏ <ul><li>Typical scenario: plant/warehouse floor (wireless), and office floor (desktops)‏ </li></ul><ul><ul><li>Plant maintenance (chemical, power)‏ </li></ul></ul><ul><ul><ul><li>Personnel with PDAs reporting to office </li></ul></ul></ul><ul><ul><li>Production environment </li></ul></ul><ul><ul><ul><li>Warehouse, equipment maintenance, report to office </li></ul></ul></ul><ul><ul><li>Office with 2 floors </li></ul></ul><ul><ul><ul><li>Mix of wireless clients and desktops </li></ul></ul></ul><ul><li>Existing standards: 802.11a/b/g, 802.11e, 802.11n </li></ul><ul><li>This project concentrates on the most popular deployed hardware: 802.11b and 802.11g, installed on one floor and wired workstations on the second floor </li></ul>
  5. 5. Related Work <ul><li>X. Cao, G. Bai, and C. Williamson, “Media streaming performance in a portable wireless classroom network” </li></ul><ul><ul><li>[3] X. Cao, G. Bai, and C. Williamson, “Media streaming performance in a portable wireless classroom network,” in Proceedings of the IASTED European Workshop on Internet Multimedia Systems and Applications (EuroIMSA) , Feb. 2005, pp. 246–252. </li></ul></ul><ul><ul><ul><li>Ad-hoc 802.11b testbed </li></ul></ul></ul><ul><ul><ul><li>400 kbps video </li></ul></ul></ul><ul><ul><ul><li>128 kbps audio </li></ul></ul></ul><ul><ul><ul><li>Demonstrates that up to 8 clients can be supported </li></ul></ul></ul>
  6. 6. Related Work <ul><li>Salah, K., and Alkhoraidly, A., “An Opnet-based Simulation Approach for Deploying VoIP” </li></ul><ul><ul><li>VoIP parameters </li></ul></ul><ul><ul><li>Chooses G.711 </li></ul></ul>[2] K. Salah and A. Alkhoraidly, “An OPNET-based Simulation Approach for Deploying VoIP,” International Journal of Network Management , vol. 16, no. 3, May 2006, pp. 149-183.
  7. 7. Related Work <ul><li>[1] K. Salah, “Analytic approach for deploying desktop videoconferencing,” IEE Proceedings Communications , vol. 153, no. 3, June 2006, pp. 434–444. </li></ul>
  8. 8. Problem Description: Technical Details <ul><li>Want to extend existing desktop conferencing simulation [1] to include wireless links </li></ul><ul><li>Previously simulated capacity using 100BaseT must be larger than our WLAN's capacity </li></ul><ul><li>WLAN becomes a bottleneck </li></ul><ul><li>Want to examine throughput, drop rate, delay, number of supported clients </li></ul><ul><li>Compare 802.11b, 802.11g in a typical environment with a mix of desktop and mobile clients </li></ul>
  9. 9. Model: Typical Office Environment
  10. 10. Model: Typical Office with Wireless Clients <ul><li>Floor 1: Plant/warehouse floor with equipment </li></ul><ul><li>Floor 2: Office, dispatch </li></ul><ul><li>Examples: </li></ul><ul><ul><li>UPS, CanadaPost </li></ul></ul><ul><ul><li>Manufacturing, chemical, power and other plants </li></ul></ul><ul><li>Enable interactive voice or video call to report to the main office or between personnel </li></ul>
  11. 11. Choice of parameters: H.323 <ul><li>Widely implemented by voice and videoconferencing equipment manufacturers </li></ul><ul><li>Used within various Internet real-time applications (i.e. GnuGK, NetMeeting and X-Meeting)‏ </li></ul><ul><li>Deployed worldwide by service providers and enterprises for voice and video services over IP networks. </li></ul><ul><li>H.323’s strength : multimedia communication functionality designed specifically for IP networks. </li></ul>
  12. 12. Choice of parameters: G.711 <ul><li>Popular audio encoder scheme </li></ul><ul><li>Payload of VoIP: 160 </li></ul><ul><li>OPNET uses: 32 voice samples, 8 bits each </li></ul><ul><li>Set Voice frames per packet: 5 </li></ul>
  13. 13. Scenarios <ul><li>Scenario 1: 802.11b (OPNET), increasing # calls model </li></ul><ul><li>Scenario 2: 802.11g (OPNET), increasing # calls model </li></ul><ul><li>Scenario 3: 802.11b verification (IT Guru)‏ </li></ul><ul><li>All 3 scenarios have 2 floors (wireless and wired)‏ </li></ul>
  14. 14. Scenario 1: 802.11b – Global pps <ul><li>IP background traffic starts at 40s, VConf at 70s </li></ul><ul><li>Tx/Rx pps mismatch at 1m 38s </li></ul>
  15. 15. Scenario 1: 802.11b <ul><li>Wireless LAN’s Dropped data (bits/s), Delay (s) and Media access delay (s)‏ </li></ul>
  16. 16. Scenario 1: 802.11b <ul><li>Wireless LAN’s Queue Size (packets)‏ </li></ul>
  17. 17. Scenario1: Discussion <ul><li># Video conferencing calls supported: </li></ul><ul><ul><li>Traffic Rx/Tx Mismatch at 1m 38s, good at 1m 36s. </li></ul></ul><ul><ul><li>Started with 2 video packets at 70s </li></ul></ul><ul><ul><li>Added 2 new calls every 2 seconds </li></ul></ul><ul><ul><li>Hence: </li></ul></ul><ul><ul><li>2calls + 2calls*((1m * 60s/m + 36s – 70s)/2s) = 28 videoconferencing calls </li></ul></ul>
  18. 18. Scenario 1: 802.11b <ul><li>Wireless LAN’s Load, Throughput and Data Dropped (bits/s)‏ </li></ul>
  19. 19. Scenario1: Discussion <ul><li>802.11b reaches the typical throughput of 6 Mbps (max theoretical rate is 11Mbps)‏ </li></ul><ul><li>Due to the CSMA/CA protocol overhead, the actual throughput is 4.3-5.9 Mbps (TCP) and 7.1 (UDP) Mbps. </li></ul>
  20. 20. Scenario 2: 802.11g <ul><li>Videoconferencing traffic sent/received (packets/sec)‏ </li></ul>
  21. 21. Scenario 2: 802.11g <ul><li>Videoconferencing traffic sent/received (bytes/sec)‏ </li></ul>
  22. 22. Scenario 2: 802.11g <ul><li>Wireless LAN’s Data Dropped (bits/s), Queue size (packets)‏ </li></ul>
  23. 23. Scenario 2: Discussion <ul><li># Video conferencing calls supported: </li></ul><ul><ul><li>Traffic Rx/Tx Mismatch at 2m 48s, good at 2m 46s. </li></ul></ul><ul><ul><li>Started with 2 video packets at 70s </li></ul></ul><ul><ul><li>Added 2 new calls every 2 seconds </li></ul></ul><ul><ul><li>Hence: </li></ul></ul><ul><ul><li>2calls + 2calls*((2m * 60s/m + 46s – 70s)/2s) = 98 videoconferencing calls </li></ul></ul>
  24. 24. Scenario 2: 802.11g <ul><li>Wireless LAN’s Load, Throughput, Data Dropped (bits/s)‏ </li></ul>
  25. 25. Scenario 2: Discussion <ul><li>The modulation scheme is OFDM with data rates of up to 54 Mbit/s </li></ul><ul><li>Higher speeds than 802.11b, higher link capacity </li></ul><ul><li>802.11g reaches its typical 23 Mbps (note: 54 Mbps is a theoretical limit </li></ul>
  26. 26. Scenario 3: Further Analysis <ul><li># Videoconferencing calls: </li></ul><ul><ul><li>First floor 802.11b: 28 </li></ul></ul><ul><ul><li>First floor 802.11g: 98 </li></ul></ul><ul><li>Are these the actual number of calls 802.11 can support? Careful! </li></ul><ul><li>Each of these calls can be made between the clients of the same floor! </li></ul><ul><li>Verify </li></ul>
  27. 27. Scenario 3: 802.11b Throughput <ul><li>Verify the validity of Scenario 1 </li></ul><ul><li>Used IT Guru for a quicker set of simulations for verification purposes </li></ul><ul><li>One server supports all services </li></ul><ul><li>Only one desktop - fixed </li></ul><ul><li>Manually add wireless clients until the packets are dropped (in contrast to automatic # calls increase)‏ </li></ul><ul><li>Compare results </li></ul>
  28. 28. Scenario 3: 802.11b revisited: IT Guru
  29. 29. Scenario 3: 9 wireless, 1 desktop <ul><li>Note the mismatch between sent and received VC traffic </li></ul>
  30. 30. Scenario 3: 8 wireless, 1 desktop <ul><li>Videoconferencing traffic sent = received </li></ul>
  31. 31. Results <ul><li>Limit for 802.11b is 9 video calls (all wireless)! </li></ul><ul><li>Agrees with X. Cao’s results (“Media streaming performance in a portable wireless classroom network” paper)‏ </li></ul><ul><li>Similar check can be done for 802.11g </li></ul>
  32. 32. Conclusions <ul><li>This study analyzed a deployment of videoconferencing clients over an existing IP infrastructure </li></ul><ul><li>Both, inter and intra floor communication was taking into account </li></ul><ul><li>802.11 reached its bandwidth limits before the IP network as expected </li></ul><ul><li>Longer simulations would result in IP packet drop rate > 0 </li></ul><ul><li># Videoconferencing (inter and intra floor) calls: </li></ul><ul><ul><li>First floor 802.11b: 28 </li></ul></ul><ul><ul><li>First floor 802.11g: 98 </li></ul></ul>
  33. 33. Future Work <ul><li>Compare with 802.11e, 802.11n </li></ul><ul><li>Add wireless to all floors </li></ul><ul><li>Add background wireless traffic </li></ul><ul><li>Add weighted call destinations to limit calls within the same floor </li></ul><ul><li>Multiple access points spaced far apart </li></ul><ul><li>Security </li></ul>
  34. 34. References <ul><li>[1] K. Salah, “Analytic approach for deploying desktop videoconferencing,” IEE Proceedings Communications , vol. 153, no. 3, June 2006, pp. 434–444. [2] K. Salah and A. Alkhoraidly, “An Opnet-based Simulation Approach for Deploying VoIP,” International Journal of Network Management , vol. 16, no. 3, May 2006, pp. 149 – 183. [3] X. Cao, G. Bai, and C. Williamson, “Media streaming performance in a portable wireless classroom network,” in Proceedings of the IASTED European Workshop on Internet Multimedia Systems and Applications (EuroIMSA) , Feb. 2005, pp. 246 – 252. [4] Y. E. Liu, J. Wang, M. Kwok, J. Diamond and M. Toulous e, “Capability of IEEE 802.11g Networks in Supporting Multi-player Online Games,” Consumer Communications and Networking Conference , Jan. 2006, pp. 1193 – 1198. [5] A. Wijesinha, Y. Song, M. Krishnan, V. Mathur, J. Ahn, and V. Shyamasundar, “Throughput measurement for UDP traffic in an IEEE 802.11g WLAN,” in Proceedings of the 6th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 2005 and First ACIS International Workshop on Self-Assembling Wireless Networks , May 2005, pp. 220–225. </li></ul>

×