SlideShare a Scribd company logo
1 of 23
Ingenierías

Ingeniería Industrial:

La ingeniería industrial es una rama de la ingeniería que se ocupa del desarrollo, mejora, implantación y
evaluación de sistemas integrados de gente, dinero, conocimientos, información, equipamiento,
energía, materiales y procesos. También trata con el diseño de nuevos prototipos para ahorrar dinero y
hacerlos mejores. La ingeniería industrial está construida sobre los principios y métodos del análisis y
síntesis de la ingeniería y el diseño para especificar, predecir y evaluar los resultados obtenidos de tales
sistemas. En la manufactura esbelta, los ingenieros industriales trabajan para eliminar desperdicios de
todos los recursos. La ingeniería industrial emplea conocimientos y métodos de las ciencias
matemáticas, físicas, sociales, políticas públicas, técnicas de gerencia etc. de una forma amplia y
genérica, para determinar, diseñar, especificar y analizar los sistemas (en sentido amplio del término), y
así poder predecir y evaluar sus resultados.

El término industrial se ha prestado a malentendidos. Mientras que el término se aplicaba originalmente
a la manufactura, se ha extendido a muchos otros sectores de servicios.

La ingeniería industrial está estrechamente identificada también con la gestión de operaciones,
ingeniería de sistemas o ingeniería de manufactura, una distinción que parece depender del punto de
vista o motivos de quien la use.

En el sector del cuidado de la salud los ingenieros industriales son conocidos comúnmente como
ingenieros administradores o ingenieros en sistemas de salud. En el sector gobierno se les conoce como
ingenieros politólogos formados por la ingeniería política.

La ingeniería industrial en España agrupa bajo el mismo término de ingeniería industrial a otras
actividades de ingeniería como ingeniería química, ingeniería eléctrica o ingeniería metalúrgica; el
término ingeniería de organización industrial es el que se usa dentro de España para referirse a lo que
fuera se llama ingeniería industrial.

La ingeniería industrial abarca varias áreas de actividad, tales como: ciencias de la administración,
procura de proyectos, gestión de cadenas de suministro, ingeniería de procesos, investigación de
operaciones, ingeniería de sistemas, ergonomía, ingeniería de calidad y reingeniería de procesos. Es una
actividad regulada en muchos países, por lo que para ejercerla se requiere una licencia o aprobación de
un colegio de ingenieros.

Algunos ejemplos de las aplicaciones de la ingeniería industrial son: el diseño de nuevos sistemas de
trabajo en bancos, las mejoras de operaciones y emergencias en hospitales, la distribución global de
productos, y la reducción y mejora de líneas de espera en bancos, hospitales, parques temáticos y
sistemas de tráfico vehicular.
Los ingenieros industriales usan comúnmente estadística y simuladores informáticos, especialmente
simulación de eventos discretos, para su análisis y evaluación.




Ingeniería Mecánica:

La ingeniería mecánica es una rama de la ingeniería, que aplica las ciencias exactas, específicamente los
principios físicos de la termodinámica, mecánica, ciencia de materiales, mecánica de fluidos y análisis
estructural para el diseño y análisis de diversos elementos usados en la actualidad, tales como
maquinarias con diversos fines (térmicos, hidráulicos, de transporte, de manufactura), así como también
de sistemas de ventilación, vehículos motorizados terrestres, aéreos y marítimos, entre otras
aplicaciones.

La ingeniería mecánica es un campo muy amplio de la ingeniería que implica el uso de los principios de
la física para el análisis, diseño, fabricación de sistemas mecánicos. Tradicionalmente, ha sido la rama de
la ingeniería que mediante la aplicación de los principios físicos ha permitido la creación de dispositivos
útiles, como utensilios y máquinas. Los ingenieros mecánicos usan principios como el calor, las fuerzas y
la conservación de la masa y la energía para analizar sistemas físicos estáticos y dinámicos,
contribuyendo a diseñar objetos. La Ingeniería Mecánica es la rama de las máquinas, equipos e
instalaciones teniendo siempre en mente aspectos ecológicos y económicos para el beneficio de la
sociedad. Para cumplir con su labor, la ingeniería mecánica analiza las necesidades, formula y soluciona
problemas técnicos mediante un trabajo interdisciplinario, y se apoya en los desarrollos científicos,
traduciéndolos en elementos, máquinas, equipos e instalaciones que presten un servicio adecuado,
mediante el uso racional y eficiente de los recursos disponibles.

En el plan de estudios de la ingeniería mecánica usualmente se encuentra:
Cálculo diferencial e integral, álgebra lineal y ecuaciones diferenciales
  Estática y dinámica
  Termodinámica, Transferencia de calor
  Dibujo técnico, diseño mecánico, diseño y fabricación asistida por computadora
  Ciencia de materiales
  Mecánica de fluidos
  Tecnología mecánica
  Análisis numérico, método de los elementos finitos
  Turbo máquinas
  Teoría de control
  Estructuras metálicas, cimentaciones
  Diseño de máquinas

Además incluye conocimientos básicos de electrónica y electricidad, química y conceptos de la
ingeniería civil.

Los campos de la ingeniería mecánica se dividen en una cantidad extensa de sub-disciplinas. Muchas de
las disciplinas que pueden ser estudiadas en Ingeniería mecánica pueden tocar temas en comunes con
otras ramas de la ingeniería. Un ejemplo de ellos son los motores eléctricos que se solapan con el campo
de los ingenieros eléctricos o la termodinámica que también es estudiada por los ingenieros químicos.

Los campos de la ingeniería mecánica pueden describirse de la siguiente forma:

  Ingeniería de producto y de manufactura
  Robótica industrial
  Meca trónica
  Manufactura flexible
  Mecanismos inteligentes
  Motores híbridos
  Nano máquinas
  Siderúrgica
  Biomecánica

La ingeniería mecánica se extiende de tal forma que es capaz de abordar un problema con la
racionalización de varios factores que pueden estar afectando y que son fundamentales para hallar
determinada solución.

Debido a la complejidad creciente de los análisis que se realizan en todas las ramas de la Ingeniería
Mecánica, el cálculo asistido por ordenador ha ido adquiriendo siempre mayor protagonismo. Se ha
producido una evolución en la representación de los sistemas físicos, pasando de esquematizar partes
del sistema en modo aproximado a reproducir todo el conjunto en modo detallado. Este proceso ha sido
posible en gran parte debido a la constante mejora de las prestaciones de los equipos informáticos, y a
la mejora de los programas de cálculo.
En el diseño de nuevos componentes, el uso de estas herramientas permite en la mayoría de los casos
obtener resultados más precisos y sobre todo una reducción de costes al permitir analizar virtualmente
el comportamiento de nuevas soluciones.

En el proceso de análisis y diseño se utilizan herramientas de cálculo como el análisis mediante
elementos finitos (FEA por sus siglas en inglés) o volúmenes finitos así como también la dinámica de
fluidos computacional (CFD). El diseño de procesos de fabricación con ayuda de computadores (LEVA),
permite que los modelos generados se puedan utilizar directamente para crear "instrucciones" para la
fabricación de los objetos representados por los modelos, mediante máquinas de control numérico
(CNC) u otros procesos automatizados, sin la necesidad de dibujos intermedios.

En el campo de Análisis y Simulación existen asociaciones independientes que proporcionan información
y elaboran normas de cálculo. Una de las más importante es la National Agency for Finite Element
Methods and Standards (NAFEMS), organización sin ánimo de lucro constituida por más de 700
compañías de todo el mundo.

La ingeniería mecánica ayuda en una mejor comodidad de los contribuyentes. Los siguientes son los
paquetes de software de análisis y diseño más extendidos:

  ALGOR
  Solid Edge
  Unigraphics NX
  ABAQUS
  Autocad
  Autodesk Inventor
  ANSYS
  CATIA
  FLUENT
  LabVIEW
  LS-DYNA
  Maple
  MSC.Adams
  MSC.Nastran
  Matlab
  ProE
  RADIOSS
  SolidWorks
  Working model
  WorkXPlore 3D

Vale la pena mencionar los software CAM (Computer Aided Manufacture) complementarios para el
manejo de maquinaria asociada a la fabricación de piezas diseñadas mediante software CAD (Computer
Aided Design).
Ingeniería de Sistemas:

La ingeniería de sistemas o ingeniería de los sistemas o ingeniería en sistemas es un modo de enfoque
interdisciplinario que permite estudiar y comprender la realidad, con el propósito de implementar u
optimizar sistemas complejos. Puede verse como la aplicación tecnológica de la teoría de sistemas a los
esfuerzos de la ingeniería, adoptando en todo este trabajo el paradigma sistémico. La ingeniería de
sistemas integra otras disciplinas y grupos de especialidad en un esfuerzo de equipo, formando un
proceso de desarrollo estructurado.

Una de las principales diferencias de la ingeniería de sistemas respecto a otras disciplinas de ingeniería
tradicionales, consiste en que la ingeniería de sistemas no construye productos tangibles. Mientras que
los ingenieros civiles podrían diseñar edificios o puentes, los ingenieros electrónicos podrían diseñar
circuitos, los ingenieros de sistemas tratan con sistemas abstractos con ayuda de las metodologías de la
ciencia de sistemas, y confían además en otras disciplinas para diseñar y entregar los productos
tangibles que son la realización de esos sistemas.


Otro ámbito que caracteriza a la ingeniería de sistemas es la interrelación con otras disciplinas en un
trabajo transdisciplinario.

De manera equivocada algunas personas confunden la ingeniería de sistemas con las ingenierías de
computación o en informatica, cuando ésta es mucho más cercana a la electrónica y la mecánica cuando
se aplica.

Actualmente existe gran controversia respecto a los estudios que se realizan en las universidades, sobre
todo en Sudamérica, pues los estudios son similares a los de Ingeniería de Computación o Informática.
La ingeniería de sistemas es la aplicación de las ciencias matemáticas y físicas para desarrollar sistemas
que utilicen económicamente los materiales y fuerzas de la naturaleza para el beneficio de la
humanidad.

Una definición especialmente completa -y que data de 1974- nos la ofrece un estándar militar de las
fuerzas aéreas estadounidenses sobre gestión de la ingeniería (MIL-STD-499B Systems Engineering).

Ingeniería de sistemas es la aplicación de esfuerzos científicos y de ingeniería para:

   transformar una necesidad de operación en una descripción de parámetros de rendimiento del
   sistema y una configuración del sistema a través del uso de un proceso interactivo de definición,
   síntesis, análisis, diseño, prueba y evaluación;

   integrar parámetros técnicos relacionados para asegurar la compatibilidad de todas las interfaces de
   programa y funcionales de manera que optimice la definición y diseño del sistema total;

   integrarse factores de fiabilidad, mantenibilidad, seguridad, supervivencia, humanos y otros en el
   esfuerzo de ingeniería total a fin de cumplir los objetivos de coste, planificación y rendimiento
   técnico.

Ingeniería de Sistemas es un conjunto de metodologías para la resolución de problemas mediante el
análisis, diseño y gestión de sistemas.

Es el conjunto de recursos humanos y materiales a través de los cuales se recolectan, almacenan,
recuperan, procesan y comunican datos e información con el objetivo de lograr una gestión eficiente de
las operaciones de una organización.

Muchos de los campos relacionados podrían ser considerados con estrechas vinculaciones a la ingeniería
de sistemas. Muchas de estas áreas han contribuido al desarrollo de la ingeniería de sistemas como área
independiente.

 Sistemas de Información

   Un sistema de información o (SI) es un conjunto de elementos que interactúan entre sí con el fin de
   apoyar las actividades de una empresa o negocio. No siempre un Sistema de Información debe estar
   automatizado (en cuyo caso se trataría de un sistema informático), y es válido hablar de Sistemas de
   Información Manuales. Normalmente se desarrollan siguiendo Metodologías de Desarrollo de
   Sistemas de Información....

   El equipo computacional: el hardware necesario para que el sistema de información pueda operar. El
   recurso humano que interactúa con el Sistema de Información, el cual está formado por las personas
   que utilizan el sistema. Un sistema de información realiza cuatro actividades básicas: entrada,
   almacenamiento, procesamiento y salida de información. es la actualizacion de datos reales y
   especificos para la agilizacion de operaciones en una empresa.
 Investigación de operaciones

  La investigación de operaciones o (IO) se enseña a veces en los departamentos de ingeniería
  industrial o de matemática aplicada, pero las herramientas de la IO son enseñadas en un curso de
  estudio en Ingeniería de Sistemas. La IO trata de la optimización de un proceso arbitrario bajo
  múltiples restricciones. (Para artículos de discusión (en inglés) ver: [1] y [2]). Se presentan las ideas
  fundamentales en las que se basa el enfoque de sistemas, los tipos de problemas de sistemas y las
  metodologías más adecuadas para abordarlos.

 Ingeniería de sistemas cognitivos

  La ingeniería de sistemas cognitivos es una rama de la ingeniería de sistemas que trata los entes
  cognitivos, sean humanos o no, como un tipo de sistemas capaces de tratar información y de utilizar
  recursos cognitivos como la percepción, la memoria o el procesamiento de información. Depende de
  la aplicación directa de la experiencia y la investigación tanto en psicología cognitiva como en
  ingeniería de sistemas. La ingeniería de sistemas cognitivos se enfoca en cómo los entes cognitivos
  interactúan con el entorno. La ingeniería de sistemas trabaja en la intersección de:

  1.   El desarrollo de la sociedad en esta nueva era
  2.   Los problemas impuestos por el mundo
  3.   Las necesidades de los agentes (humano, hardware, software)
  4.   La interacción entre los varios sistemas y tecnologías que afectan (y/o son afectados por) la
       situación.

  Algunas veces designados como ingeniería humana o ingeniería de factores humanos, esta rama
  además estudia la ergonomía en diseño de sistemas. Sin embargo, la ingeniería humana suele
  tratarse como otra especialidad de la ingeniería que el ingeniero de sistemas debe integrar.

  Habitualmente, los avances en ingeniería de sistemas cognitivos se desarrollan en los departamentos
  y áreas de Informática, donde se estudian profundamente e integran la inteligencia artificial, la
  ingeniería del conocimiento y el desarrollo de interfaces hombre-máquina (diseños de usabilidad) de
  la ciencia

  El Ingeniero de sistemas habitualmente aprende a programar, para dirigir a programadores y al
  momento de la creacion de un programa debe saber y tener en cuenta los metodos básicos como tal,
  por eso es importante que aprenda a programar pero su función realmente es el diseño y planeacion,
  y todo lo referente al sistema o redes, su mantenimiento y efectividad, respuesta y tecnología.
Ingeniería Química:

La Ingeniería química es una rama de la ingeniería, que se encarga del diseño, manutención, evaluación,
optimización, simulación, planificación, construcción y operación de plantas en la industria de procesos,
que es aquella relacionada con la producción de compuestos y productos cuya elaboración requiere de
sofisticadas transformaciones físicas y químicas de la materia.

La ingeniería química también se enfoca al diseño de nuevos materiales y tecnologías, es una forma
importante de investigación y de desarrollo. Además es líder en el campo ambiental, ya que contribuye
al diseño de procesos ambientalmente amigables y procesos para la descontaminación del medio
ambiente.

Plan de estudios: la ingeniería química se fundamenta en las ciencias básicas como matemática (algebra
lineal o superior, cálculo, ecuaciones diferenciales, métodos numéricos, matemática avanzada), las
ciencias básicas de la ingeniería química (termodinámica, fenómenos de transporte, cinética química), y
disciplinas aplicadas tales como ingeniería de procesos, diseño de reactores, diseño de equipos para
procesos químicos, y procesos de separación. También se van incorporando elementos de ciencias
ambientales, biotecnología, ingeniería de alimentos e ingeniería de materiales.

La ingeniería química implica en gran parte el diseño y el mantenimiento de los procesos químicos para
la fabricación a gran escala. Emplean a los ingenieros químicos (al igual que los ingenieros de petróleo
aunque en menor medida) en esta rama generalmente bajo título de "ingeniero de proceso". El
desarrollo de los procesos a gran escala característicos de economías industrializadas es una hazaña de
la ingeniería química, no de la química en su más pura expresión. De hecho, los ingenieros químicos son
responsables de la disponibilidad de los materiales de alta calidad modernos que son esenciales para
hacer funcionar una economía industrial.
Por otro lado, la química es la ciencia que estudia (a escala laboratorio) la materia, sus cambios y la
energía involucrada. La importancia radica en que todo lo que nos rodea es materia. El ingeniero
químico participa de una manera importante en lo relacionado al diseño y la administración de todo el
proceso químico a escala industrial que permite satisfacer una necesidad partiendo de materias primas
hasta poner en las manos del consumidor un producto final.

La presencia del profesional de la ingeniería química la podemos ver en áreas tales como la producción,
control de procesos, control de calidad, seguridad industrial, apoyo técnico-legal, seguridad e higiene,
alimentos, cosmético y ecología en donde plantea, diseña, construye, opera y controla unidades para
disminuir el impacto contaminante de las actividades humanas.

 Aplicaciones

  Las aplicaciones que puede realizar un ingeniero químico son variadas; pueden mencionarse las
  siguientes a modo de ejemplo:

    Estudios de factibilidad técnico-económica
    Especificación / Diseño de equipos y procesos
    Construcción / Montaje de equipos y plantas
    Control de producción / Operación de plantas industriales
    Gerencia y administración
    Control de calidad de productos
    Compras y comercialización
    Ventas técnicas
    Control ambiental
    Investigación y desarrollo de productos y procesos
    Capacitación de recursos humanos

 Sectores industriales

  Entre los sectores industriales más importantes que emplean a profesionales de la ingeniería química
  se encuentran:

    Industria química / Petroquímica
    Gas y petróleo / Refinerías
    Alimentos y bebidas / Biotecnología
    Siderúrgica / Metalúrgica / Automotriz
    Materiales / Polímeros / Plásticos
    Generación de energía
    Otras (farmacéutica, textil, papelera, minera, etc.)
 Diferencia entre la química y la ingeniería química

   La diferencia entre la química y la ingeniería química puede ser ilustrada considerando el ejemplo de
   producir el jugo de naranja. Un químico investiga los componentes moleculares y atómicos de la
   naranja, las reacciones y las propiedades químicas y fisicoquímicas de la naranja y sus componentes;
   además busca nuevas opciones para sintetizar los productos y subproductos. El ingeniero químico
   diseña los equipos para obtener a gran escala los productos y subproductos, garantiza que la calidad
   de él corresponda a las especificaciones químicas y fisicoquímicas. También, el ingeniero químico
   diseña nuevos procesos para la mejora de los actuales, debe estudiar los procesos que menos
   contaminen el ambiente y comprender la termodinámica y las operaciones unitarias de transferencia
   de cantidad de materia, energía y cantidad de movimiento. Además debe diseñar procesos y equipos
   que preserven la integridad del personal que los usa mediante estudios de seguridad industrial.

   Los Ingenieros Químicos están involucrados en todas las actividades que se relacionen con el
   procesamiento de materias primas (de origen animal, vegetal o mineral) que tengan como fin
   obtener productos de mayor valor y utilidad. Por lo tanto, pueden desarrollar sus actividades en:

      Plantas industriales / Empresas Productivas
      Empresas de construcción y/o montaje de plantas y equipos
      Empresas proveedoras de servicios técnicos (consultoría, control de calidad, mantenimiento, etc.)
      Organismos gubernamentales o no gubernamentales de acreditación, control y estándares
      Instituciones de educación superior
      Centros de Investigación y Desarrollo (Industriales / Académicos)


   Durante la planeación de un proceso de manufactura el ingeniero químico debe: definir los
   problemas, determinar el objetivo, considerar las limitaciones de tiempo, materiales y costo y, en
   consecuencia, diseñar y desarrollar la planta de proceso.

   Una vez instalado el equipo de proceso, el ingeniero químico permanece con frecuencia en la planta
   para supervisar y administrar la operación, así como para asegurar el control de calidad y el
   mantenimiento de la producción.

   Por lo tanto, el desarrollo profesional del ingeniero químico comprende los siguientes campos de
   actividad:

      Control de procesos, automatización e instrumentación.

      Informática, programación y manejo de computadoras.

      Energéticos, fuentes alternas de energía
Control de contaminación.

     Simulación de procesos.

     Síntesis de procesos.

     Productividad y calidad.

     Polímeros, plásticos y cerámicos.

     Biotecnología.

     Investigación.

     Manejo de desechos tóxicos.

     Administración y ventas.




Ingeniería Metalúrgica:

La ingeniería metalúrgica es la rama de la Ingeniería de Materiales que se encarga de tratar los
elementos metálicos y no metálicos contenidos en los minerales mediante procesos físicos y químicos
(procesamiento de minerales), así como la producción de materiales utilizando éstos elementos, la
extracción, el procesamiento y la fundición del hierro para la producción de acero se denomina
siderurgia, y permite obtener materiales para construcción y trabajo en metal-mecánica, además de
transformación en productos netamente finales (conformado de metales), por ejemplo los diferentes
productos utilizados en la vida diaria hechos de metales.

También se considera dentro de la metalurgia las operaciones electrolíticas, tratamientos térmicos,
fabricación de aleaciones y otros aspectos relacionados netamente con los metales y en los no metales
la producción de cerámicas, refractarios y diversos cristales.

La ingeniería metalúrgica se encarga de la utilización de los metales para realizar productos útiles al
hombre. Se realizan aleaciones metálicas para forma diferentes productos que serán utilizados en la
inmensa gama del mercado.

Los procesos metalúrgicos comprenden las siguientes fases:

 Obtención del metal a partir del mineral que lo contiene en estado natural, separándolo de la ganga.
 El afino, enriquecimiento o purificación: eliminación de las impurezas que quedan en el metal.
 Elaboración de aleaciones.
 Otros tratamientos del metal para facilitar su uso.

Operaciones básicas de obtención de metales:

 Operaciones físicas: triturado, molido, filtrado (a presión o al vacío), centrifugado, decantado,
 flotación, disolución, destilación, secado, precipitación física.
 Operaciones químicas: tostación, oxidación, reducción, hidrometalurgia, electrólisis, hidrólisis,
 lixiviación mediante reacciones ácido-base, precipitación química, electrodeposición y cianuración.

Dependiendo el producto que se quiera obtener, se realizarán distintos métodos de tratamiento. Uno
de los tratamientos más comunes es la mena ya que es conveniente en el aspecto económico, consiste
en la separación de los materiales de desecho, normalmente entre los materiales hay arcilla y minerales
de silicatos, a esto se le puede denominar como ganga. Para ello, es útil el uso del método de la
flotación que consiste que durante el proceso que la mena se muele y se vierte en agua que contiene
aceite y detergente. Esta mezcla liquida al batir se va a producir una espuma que va a trabajar con la
ayuda del aceite las partículas del mineral de forma selectiva y donde va ir arrastrando hacia la
superficie de la espuma dichas partículas y dejando en el fondo la ganga.

Otra forma de flotación es el proceso que pueden emplearse las propiedades magnéticas de los
minerales, esto se puede hacer por medio de imanes ya que estos minerales son ferromagnéticos,
donde atrae al mineral dejando intacto a la ganga.

Para su extracción de la mena se utiliza las amalgamas que es la aleación de mercurio con otro metal o
metales. Se disuelve la plata o el oro, contenido en la mena para formar una amalgama liquida, que se
separa con facilidad del resto de la mena. Es por ello que se usa el oro y la plata se recuperan a través de
la destilación del mercurio.1
Ingeniería Electrónica:

La Ingeniería electrónica es una rama de la ingeniería, basada en la electrónica, que se encarga de
resolver problemas de la ingeniería tales como el control de procesos industriales, la transformación de
la electricidad para el funcionamiento de diversos dispositivos y tiene aplicación en la industria, en las
telecomunicaciones, en el diseño y análisis de instrumentación electrónica, microcontroladores y
microprocesadores.

Esta ingeniería es considerada un área de estudio de la ingeniería eléctrica en los Estados Unidos y
Europa.

La ingeniería electrónica es el conjunto de conocimientos técnicos, tanto teóricos como prácticos que
tienen por objetivo la aplicación de la tecnología electrónica para la resolución de problemas prácticos.

La electrónica es una rama de la física que trata sobre el aprovechamiento y utilidad del
comportamiento de las cargas eléctricas en los diferentes materiales y elementos como los
semiconductores. La ingeniería electrónica es la aplicación práctica de la electrónica para lo cual
incorpora además de los conocimientos teóricos y científicos otros de índole técnica y práctica sobre los
semiconductores así como de muchos dispositivos eléctricos además de otros campos del saber humano
como son dibujo y técnicas de planificación entre otros.

Entre la ingeniería electrónica y la ingeniería eléctrica existen similitudes fundamentales, pues ambas
tienen como base de estudio el fenómeno eléctrico. Sin embargo la primera se especializa en circuitos
de bajo voltaje entre ellos los semiconductores, los cuales tienen como componente fundamental al
transistor o el comportamiento de las cargas en el vacío como en el caso de las viejas válvulas
termoiónicas y la ingeniería eléctrica se especializa en circuitos eléctricos de alto voltaje como se ve en
las líneas de transmisión y en las estaciones eléctricas. Ambas ingenierías poseen aspectos comunes
como pueden ser los fundamentos matemáticos y físicos, la teoría de circuitos, el estudio del
electromagnetismo y la planificación de proyectos. Otra diferencia fundamental reposa en el hecho de
que la ingeniería electrónica estudia el uso de la energía eléctrica para transmitir, recibir y procesar
información, siendo esta la base de la ingeniería de telecomunicación, de la ingeniería informática y la
ingeniería de control automático. El punto concordante de las ingenierías eléctrica y electrónica es el
área de potencia. La electrónica se usa para convertir la forma de onda de los voltajes que sirven para
transmitir la energía eléctrica; la ingeniería eléctrica estudia y diseña sistemas de generación,
distribución y conversión de la energía eléctrica, en suficientes proporciones para alimentar y activar
equipos, redes de electricidad de edificios y ciudades entre otros.

Las áreas específicas en que el ingeniero electrónico puede contribuir al desarrollo se puede resumir en:

 Electrónica de potencia

  Esta rama consiste en adaptar y transformar la electricidad, para su uso posterior en dispositivos
  eléctricos y electrónicos, tales como motores eléctricos y servomotores. Se usan principalmente
  resistencias, rectificadores, Inversores, cicloconversores y choppers.

 Computadores o electrónica digital

  La automatización creciente de sistemas y procesos que conlleva necesariamente a la utilización
  eficiente de los computadores digitales. Los campos típicos de este ingeniero son: redes de
  computadores, sistemas operativos y diseño de sistemas basado en microcomputadores o
  microprocesadores, que implica diseñar programas y sistemas basados en componentes electrónicos.

  Entre las empresas relacionadas con estos tópicos se encuentran aquellas que suministran equipos y
  desarrollan proyectos computacionales y las empresas e instituciones de servicios.

 Control de procesos industriales

  La actividad se centra aquí en la planificación, diseño, administración, supervisión y explotación de
  sistemas de instrumentación, automatización y control en líneas de montaje y procesos de sistemas
  industriales, tales como empresas papeleras, pesqueras, textiles, de manufactura, mineras y de
  servicios.

  El control automático moderno emplea en forma intensiva y creciente computadores en variados
  esquemas. Asimismo, la disciplina envuelve sistemas de índoles no convencionales tales como
  robótica, sistemas expertos, sistemas neuronales, sistemas difusos, sistemas artificiales evolutivos y
  otros tipos de control avanzado.

 Telecomunicaciones

  El procesamiento y transmisión masiva de la información requiere de la planificación, diseño y
  administración de los sistemas de radiodifusión, televisión, telefonía, redes de computadores, redes
  de fibra óptica, las redes satelitales y en forma cada vez más significativa los sistemas de
  comunicación inalámbricos, como la telefonía celular y personal.
 Ingeniería de componentes

  Gran parte del proceso de producción en las empresas de electricidad y electrónica está relacionado
  con el diseño de circuitos. En este proceso es de gran importancia un conocimiento especializado de
  los componentes, lo que ha dado lugar a una especialidad dentro de la ingeniería electrónica
  denominada ingeniería de componentes.

  En esta especialidad el ingeniero deberá encargarse de una serie de funciones en las que cabe
  destacar las siguientes:

    Asesorar a los diseñadores: Para ello deberá tener conocimientos profundos sobre componentes
    tanto a nivel teórico como práctico. Además deberá estar constantemente al día para conocer las
    novedades del mercado así como sus tendencias.
    Redactar normas: Relacionadas con el manejo de los componentes desde que entran en la empresa
    hasta que pasan a la cadena de montaje.
    Elaborar una lista de componentes preferidos.
    Seleccionar componentes: Deberá elegirlo de entre la lista de preferidos y si no está, realizar un
    estudio de posibles candidatos. Con ello se persigue mejorar los diseños.
    Relacionarse con los proveedores: Para resolver problemas técnicos o de cualquier otro tipo.

  En la ingeniería de componentes se tiene en cuenta los materiales empleados así como los procesos
  de fabricación, por lo que el ingeniero deberá tener conocimientos al respecto.




Ingeniería Civil:

La ingeniería civil es una rama de la Ingeniería, que aplica los conocimientos de física, química, cálculo,
geografía y geología a la elaboración de estructuras, obras hidráulicas y de transporte. La denominación
"civil" se debe a su origen diferenciado de la ingeniería militar.
Tiene también un fuerte componente organizativo que logra su aplicación en la administración del
ambiente urbano principalmente, y frecuentemente rural; no sólo en lo referente a la construcción, sino
también, al mantenimiento, control y operación de lo construido, así como en la planificación de la vida
humana en el ambiente diseñado desde esta misma. Esto comprende planes de organización territorial
tales como prevención de desastres, control de tráfico y transporte, manejo de recursos hídricos,
servicios públicos, tratamiento de basuras y todas aquellas actividades que garantizan el bienestar de la
humanidad que desarrolla su vida sobre las obras civiles construidas y operadas por ingenieros civiles.

Los conocimientos necesarios para ejercer de ingeniero civil son:

 Conocimientos y bases tanto de geometría como todo tipo de cálculos y manipulaciones matemáticas
 que sean aplicables en problemas de ingeniería.
 Conocimientos de cálculo de esfuerzos y deformaciones en estructuras ante diferentes acciones
 (comportamiento de las vigas de un puente ante el paso de un tren, de una presa ante la presión
 hidrostática del agua que retiene, de una zapata al transmitir el peso de la estructura que sustenta al
 terreno.)
 Conocimientos de los materiales que se utilizarán en la ejecución de la obra (resistencia, peso,
 envejecimiento, etc.).
 Conocimientos del comportamiento del terreno ante las solicitudes de las estructuras que se apoyen
 en él (capacidad portante, estabilidad ante dichas solicitaciones, etc.).
 Conocimientos de Hidrología para el cálculo de avenidas o caudales para el diseño de presas o azudes,
 dimensionamiento de luces de puentes, etc.
 Conocimiento de técnicas de cálculo de aforos para el dimensionamiento de las carreteras, etc.
 Conocimientos de estética, de historia, de arte, del paisaje, etc.
 Conocimientos de urbanismo y de ordenación del territorio, que le permiten comprender las fuertes
 implicaciones territoriales y de ordenación poblacional que suponen las grandes obras de
 infraestructura.
 Y, por supuesto, conocimiento de los procedimientos, técnicas y maquinaria necesarios para la
 aplicación de los conocimientos anteriores.

En general, existe un gran número de posibles soluciones técnicas para un mismo problema y muchas
veces ninguno de ellas es claramente preferible a otra. Es la labor de un Ingeniero Civil conocer todas
ellas para descartar las menos adecuadas y estudiar únicamente aquellas más prometedoras, ahorrando
así tiempo y dinero. Es también labor del Ingeniero Civil el conocimiento de las posibles formas de
ejecución de la solución adoptada o de la maquinaria disponible para ello. Debe, además, tener los
conocimientos necesarios para evaluar los posibles problemas que se puedan presentar en la obra y
adoptar la decisión correcta, considerando, entre otros, aspectos de carácter social y medio ambiental.

Por todo ello, además de una sólida formación, es vital en la labor de un Ingeniero Civil una dilatada
experiencia laboral, que le permita reconocer a simple vista el problema y adoptar soluciones que hayan
demostrado su fiabilidad en el pasado.

Su campo de aplicación es muy amplio. Estarían, por ejemplo, las infraestructuras del transporte:
Aeropuertos
 Autovías
 Carreteras
 Vías férreas
 Puertos
 Puentes
 Redes de transporte urbano

Las obras hidráulicas:

 Alcantarillado
 Azudes
 Canales para el transporte de agua potable o regadío
 Canales de navegación
 Canalizaciones de agua potable
 Centrales hidroeléctricas
 Depuradoras
 Diques
 Esclusas
 Muelles.
 Presas

La intervención sobre problemas de estabilidad del terreno.

Las estructuras que componen las obras anteriores:

 Terraplenes
 Desmontes
 Obras de contención de terreno
 Túneles
 Zapatas
 Pilares
 Vigas
 Estribos de puentes

En general, las obras de ingeniería civil implican el trabajo una gran cantidad de personas (en ocasiones
cientos y hasta miles) a lo largo de lapsos que abarcan desde unas pocas semanas o meses hasta varios
años.

Debido al elevado coste de los trabajos que se acometen (piénsese en el coste de una autovía o de una
línea de ferrocarril) buena parte de los trabajos que se realizan son para el Estado, o bien para grandes
compañías que pretenden la explotación de una infraestructura a largo plazo (autopistas y túneles de
peaje, compañías de ferrocarril, etcétera). Sin embargo, sus técnicas son también aplicadas para obras
semejantes a las anteriores pero de más pequeña escala, como podrían ser:
La contención de un terreno difícil en la excavación para la cimentación de un edificio.
 La ejecución de la estructura de un edificio.
 El diseño y ejecución de los sistemas de distribución de agua potable y alcantarillado de una pequeña
 población (incluyendo las estaciones de tratamiento de agua potable (ETAP), equipos de bombeo,
 estaciones de depuración de aguas residuales (EDAR), etc.
 El diseño y urbanización de las calles de una pequeña población

Además, son también competencia de un Ingeniero Civil:

 La planificación, diseño y control de los sistemas de transporte urbano, incluyendo el diseño de
 intercambiadores y la creación de nuevas líneas o modificación de las existentes.
 Adopción de nuevos sistemas de transporte que no existan en ese momento, como líneas de metro o
 metro ligero (más comúnmente conocido como tranvía).
 Planificación, ejecución y administración de plantas de tratamiento o incineración de residuos y
 vertederos.
 Labores auxiliares de ingeniería (control de calidad, ensayos de laboratorio, supervisión de temas de
 seguridad y salud).
 Mantenimiento de todas las anteriores

De esta forma, un Ingeniero Civil no se limita a las grandes obras de infraestructura, muy raras debido a
su elevado coste.




Ingeniería de Telecomunicaciones:

La Ingeniería de Telecomunicaciones es una rama de la ingeniería, que resuelve problemas de
transmisión y recepción de señales e interconexión de redes. El término telecomunicaciones se refiere a
la comunicación a distancia a través de la propagación de ondas electromagnéticas. Esto incluye muchas
tecnologías, como radio, televisión, teléfono, comunicaciones de datos y redes informáticas. La
definición dada por la Unión Internacional de Telecomunicaciones (ITU, International
Telecommunication Union) para telecomunicación es toda emisión, transmisión y recepción de signos,
señales, escritos e imágenes, sonidos e informaciones de cualquier naturaleza, por hilo,
radioelectricidad, medios ópticos u otros sistemas electromagnéticos.

El segundo ciclo de la titulación lo componen las especialidades de Telemática, Comunicaciones,
Electrónica y Robótica.

Un sistema de telecomunicaciones está compuesto por el emisor de información, el canal de
transmisión y el receptor de la información. El emisor es un dispositivo que transforma o codifica el
mensaje en un fenómeno físico: la señal. El canal o medio transmite dicha señal, y el receptor hace el
proceso inverso al emisor para obtener la información.

Las funciones del emisor siempre implican de uno u otro modo la codificación de la información y su
adaptación al canal. El canal de transmisión, por razones físicas, modifica o degrada de algún modo la
señal en su trayecto. El receptor ha de realizar las funciones de detectar la señal, recomponerla y
decodificarla con el fin de extraer la información. En este proceso siempre existe una posibilidad de
error, que la ingeniería de telecomunicaciones trata de minimizar.

A modo de ejemplo familiar de un sistema de telecomunicación podemos considerar la comunicación
vocal entre personas. Este caso podemos descomponerlo así:

 El emisor: persona que habla. La consciencia de una persona quiere transmitir un mensaje (idea o
 concepto), el cerebro lo codifica en palabras de un idioma y se lo "envía" a la boca para que lo
 pronuncie, quedando finalmente codificado en una serie de sonidos producidos los las cuerdas vocales
 y órganos de fonación.
 El medio está compuesto por la capa de aire que existe entre los dos intervinientes. Por él transcurren
 la vibraciones emitidas, que pueden ser afectadas de distintas maneras por ruido ambiente, ecos, otras
 conversaciones...
 El receptor está compuesto por el conjunto oído/cerebro. El oído convierte las vibraciones a impulsos
 eléctricos, que son procesados por el cerebro con el fin de extraer el mensaje, del que informa a la
 "consciencia".

En otros casos, a modo de ejemplo, la comunicación se puede realizar entre faxes, teléfonos, teclado-
impresora, cámara-pantalla... y el canal de comunicación puede estar compuesto por hilos, ondas de
radio, fibra óptica, satélite...

Según el sentido de la transmisión podemos clasificar la comunicación en unidireccional (del emisor al
receptor) u bidireccional (comunicación en ambos sentidos).

La topología de una telecomunicación puede ser punto a punto y punto a multipunto (llamada difusión
en el caso extremo con muchos receptores y con transmisión unidireccional).
El problema intrínseco de la comunicación se presenta cuando queremos transmitir información de
manera rápida o entre dos puntos lejanos, o ambas cosas a la vez. Ese es el caso que ha hecho
desarrollar la ingeniería de telecomunicaciones.1

Una definición general que permite aproximarse al perfil de un Ingeniero concibe al mismo como el
profesional que, con una sólida base en ciencias básicas, puede integrar y proyectar los principios de la
ingeniería para plantear soluciones a problemas del ámbito tecnológico usando como herramientas la
formulación de modelos matemáticos, el diseño y el cálculo.

En particular, el Ingeniero de Telecomunicaciones puede definirse como un profesional cuya formación
lo faculta para planificar, proyectar, diseñar y calcular sistemas, redes y servicios de generación,
transmisión, detección, manejo y gestión de teleinformación. Incluye también una sólida formación en
las áreas de la administración y economía que lo habilitan para dirigir, organizar y explotar servicios de
telecomunicaciones y para ejecutar, supervisar y evaluar proyectos relacionados con el área.

En particular, la carrera de Ingeniería de Telecomunicaciones aspira a formar un graduado con un perfil
técnico gerencial, que sea creativo, innovador, competitivo, emprendedor, competente para el trabajo
en equipo, con sensibilidad hacia los problemas sociales y con potencialidad para incidir en sus
soluciones.

 Uno de los papeles del ingeniero de telecomunicaciones en cuanto al diseño de nuevos sistemas de
 comunicación es analizar las propiedades físicas del medio de transmisión.

 El profesional ocupa hoy en día son las redes digitales y analógicas a lo largo y ancho del planeta
 (océanos incluidos) donde existan personas que necesiten comunicarse.

 Su tarea es diseñar, instalar, operar y mantener equipos y redes de difusión de Radio y Televisión,
 Redes Telefónicas fijas (pares y coaxiales de cobre), teléfonos móviles y Globales mediante teléfonos
 satelitales, redes de comunicación de datos privadas y públicas.

Se utiliza todos los medios disponibles, cobre, fibra óptica, radios y satélites, logrando redes escalables y
racionalizando las inversiones de infraestructura.

En los tres últimos años, las redes que más crecieron en capilaridad y capacidad de transporte son las
redes de telefonía celular y de transporte de Internet, las que utilizan todos las tecnologías antes
citadas. Creando una revolución en las comunicaciones entre personas e instituciones como jamás ha
disfrutado la humanidad, permitiendo una globalización y democratización de la cultura.

Otro aspecto de las telecomunicaciones es la progresiva informatización de la actividad humana,
posibilitando el crecimiento de las demás ramas del saber y actividad humanas. Si bien todavía tenemos
casos donde muchos países no pueden desplegarse redes de comunicaciones y otros donde se ejerce la
censura, el futuro es prometedor.
Los sistemas de comunicaciones están diseñados para comunicarse a través de órganos sensoriales
humanos (principalmente los de Percepción visual y Percepción sonora), en los cuales se tiene en cuenta
las características psicológicas y fisiológicas de la percepción humana, el ejemplo más común que
podemos citar el sonido de campanilla que escuchamos cuando llamamos por teléfono, si bien
técnicamente no es necesario si lo necesita la persona que espera ser atendida. Por otra parte los
sistemas se diseñan utilizando la capacidad de nuestros órganos sensoriales de integrar la información,
como ejemplo la transmisión de televisión que utiliza la remanencia visual de los ojos para transmitir
menos información, abaratando el costo de los receptores y transmisores. Lo mismo sucede con la
telefonía celular y la comunicación por VoIP utilizando internet como vínculo de bajo costo.

Actualmente en países cuyos habitantes poseen un mayor poder adquisitivo, ante ciertos tipos de
defectos, a pesar de ser objetivamente razonables en función del costo beneficio, reclaman a los
operadores una mayor calidad de servicio, ejemplos de ello son: Televisión de Alta Definición, vídeo
sobre demanda, Banda Ancha en servicios de internet, mayor calidad y sofisticación de telefonía celular
como 3G, equipos de interfaz más sofisticados con más y mejores funciones, un ejemplo son los
teléfonos celulares que hoy pueden incluir: captura de video, cámara fotográfica, variedad de tonos de
alerta, vibrador, trunking, grabador de voz, internet por WiMax, agenda y capacidad de realizar pagos
como una tarjeta de crédito.

De todos modos existe un compromiso entre reducción de costes y las demandas de los usuarios de
sistemas de gran calidad, lo que consiste una importante consideración de cara al diseño de estos
sistemas por parte de los grandes operadores de telecomunicaciones que deberán seguir
indefectiblemente las regulaciones de los distintos gobiernos y de los organismos internacionales como
La ITU.

En la actualidad el estudio de la ingeniería de Telecomunicaciones está descompuesto en dos ciclos, que
estudian estas áreas de conocimiento:2

    Primer ciclo (común con otras ingenierías) de tres años de duración
o   Física
o   Programación
o   Matemáticas
o   Circuitos electrónicos
o   Electrotecnia y sistemas de energía
o   Electricidad y magnetismo
o   Sistemas lineales
o   Comunicaciones digitales
o   Inglés
o   Redes de comunicaciones
o   Sistemas digitales
o   Transmisión de datos

  Segundo ciclo con dos años de duración
o Arquitectura de los ordenadores
o   Campos electromagnéticos
o   Diseño de circuitos y sistemas electrónicos
o   Electrónica de comunicaciones
o   Radiación y propagación
o   Redes de ordenadores
o   Tratamiento digital de señales
o   Comunicaciones ópticas
o   Instrumentación electrónica
o   Organización de empresas
o   Ingeniería y sociedad

Este segundo ciclo a completarse con las asignaturas correspondientes a una de las siguientes
especialidades:

    Comunicaciones
    Electrónica
    Telemática
    Bioingeniería
    Gestión de la Tecnología
    Sistemas Audiovisuales




Ingeniería Eléctrica:

La ingeniería eléctrica es el campo de la ingeniería que se ocupa del estudio y la aplicación de la
electricidad, la electrónica y el electromagnetismo. Aplica conocimientos de ciencias como la física y las
matemáticas para generar, transportar, distribuir y utilizar la energía eléctrica.

Dicha área de la ingeniería es reconocida como carrera profesional en todo el mundo y constituye una
de las áreas fundamentales de la ingeniería desde el siglo XIX con la comercialización del telégrafo
eléctrico y la generación industrial de energía eléctrica. El campo, ahora, abarca una serie de disciplinas
que incluyen la electrotecnia, la electrónica, los sistemas de control, el procesamiento de señales y las
telecomunicaciones.

Dependiendo del lugar y del contexto en que se use, el término ingeniería eléctrica puede o no incluir a
la ingeniería electrónica. Cuando se hace una distinción, generalmente se considera la ingeniería
eléctrica para hacer frente a los problemas asociados sistemas eléctricos de gran escala, como los
sistemas eléctricos de transmisión de energía y de control de motores, mientras que la ingeniería
electrónica trata del estudio de sistemas eléctricos a pequeña escala, incluidos los sistemas electrónicos
con semiconductores y circuitos integrados.1

La ingeniería eléctrica aplica conocimientos de ciencias como la física y las matemáticas.

Considerando que esta rama de la ingeniería resulta más abstracta que otras, la formación de un
ingeniero electricista requiere una base matemática que permita la abstracción y entendimiento de los
fenómenos electromagnéticos.

Tras este tipo de análisis ha sido posible comprender esta rama de la física, mediante un conjunto de
ecuaciones y leyes que gobiernan los fenómenos eléctricos y magnéticos. Por ejemplo, el desarrollo de
las leyes de Maxwell permite describir los fenómenos electromagnéticos y forman la base de la teoría
del electromagnetismo. En el estudio de la corriente eléctrica, la base teórica parte de la ley de Ohm y
las leyes de Kirchhoff.

Además se requieren conocimientos generales de mecánica y de ciencia de materiales, para la
utilización adecuada de materiales adecuados para cada aplicación.

Un ingeniero electricista debe tener conocimientos básicos de otras áreas afines, pues muchos
problemas que se presentan en ingeniería son complejos e interdisciplinares.

More Related Content

What's hot

Presentacion conocieminetos empleados
Presentacion conocieminetos empleadosPresentacion conocieminetos empleados
Presentacion conocieminetos empleadosLORENA_C11
 
L100 uachmc003 2_memoria general de proyecto (documentos y planos)
L100 uachmc003 2_memoria general de proyecto (documentos y planos)L100 uachmc003 2_memoria general de proyecto (documentos y planos)
L100 uachmc003 2_memoria general de proyecto (documentos y planos)luckyluck28
 
Temario de ingeniería de sistemas
Temario de ingeniería de sistemasTemario de ingeniería de sistemas
Temario de ingeniería de sistemasSu27Flanker
 
Ingenieria de sistemas e informatica
Ingenieria de sistemas e informaticaIngenieria de sistemas e informatica
Ingenieria de sistemas e informaticawilliam_c_26
 
Presentacion De La Carrera Ingenieria De Sistemas
Presentacion De La Carrera Ingenieria De SistemasPresentacion De La Carrera Ingenieria De Sistemas
Presentacion De La Carrera Ingenieria De SistemasJORGE SOMARRIBA
 
Ingeniería Mecatronica
Ingeniería Mecatronica  Ingeniería Mecatronica
Ingeniería Mecatronica cissmanherney20
 
Ingeniería mecánica diapositivas2
Ingeniería mecánica  diapositivas2Ingeniería mecánica  diapositivas2
Ingeniería mecánica diapositivas2Ximena Gutiérrez
 
Trabajo De Computacion
Trabajo De ComputacionTrabajo De Computacion
Trabajo De Computacionazucenacordova
 
Ingeniería industrial
Ingeniería industrialIngeniería industrial
Ingeniería industrialHellen ʚïɞ
 
La ingenieria en sistemas bajo las tgs
La ingenieria en sistemas bajo las tgsLa ingenieria en sistemas bajo las tgs
La ingenieria en sistemas bajo las tgsDiego Erazo
 
Ingeniería mas la mecanica
Ingeniería mas la mecanica Ingeniería mas la mecanica
Ingeniería mas la mecanica angel cisneros
 
Presentación posibles carreras
Presentación posibles carrerasPresentación posibles carreras
Presentación posibles carrerasadrirober
 

What's hot (19)

Presentacion conocieminetos empleados
Presentacion conocieminetos empleadosPresentacion conocieminetos empleados
Presentacion conocieminetos empleados
 
L100 uachmc003 2_memoria general de proyecto (documentos y planos)
L100 uachmc003 2_memoria general de proyecto (documentos y planos)L100 uachmc003 2_memoria general de proyecto (documentos y planos)
L100 uachmc003 2_memoria general de proyecto (documentos y planos)
 
Temario de ingeniería de sistemas
Temario de ingeniería de sistemasTemario de ingeniería de sistemas
Temario de ingeniería de sistemas
 
Ingenieria de sistemas e informatica
Ingenieria de sistemas e informaticaIngenieria de sistemas e informatica
Ingenieria de sistemas e informatica
 
Estadísticas con calidad
Estadísticas con calidadEstadísticas con calidad
Estadísticas con calidad
 
Presentacion De La Carrera Ingenieria De Sistemas
Presentacion De La Carrera Ingenieria De SistemasPresentacion De La Carrera Ingenieria De Sistemas
Presentacion De La Carrera Ingenieria De Sistemas
 
Ingeniería Mecatronica
Ingeniería Mecatronica  Ingeniería Mecatronica
Ingeniería Mecatronica
 
Ingeniería mecánica diapositivas2
Ingeniería mecánica  diapositivas2Ingeniería mecánica  diapositivas2
Ingeniería mecánica diapositivas2
 
Trabajo De Computacion
Trabajo De ComputacionTrabajo De Computacion
Trabajo De Computacion
 
Ingeniería económica
Ingeniería económica Ingeniería económica
Ingeniería económica
 
Introduccion a la mecatronica
Introduccion a la mecatronicaIntroduccion a la mecatronica
Introduccion a la mecatronica
 
Ingeniería industrial
Ingeniería industrialIngeniería industrial
Ingeniería industrial
 
La ingenieria en sistemas bajo las tgs
La ingenieria en sistemas bajo las tgsLa ingenieria en sistemas bajo las tgs
La ingenieria en sistemas bajo las tgs
 
Ingeniería mas la mecanica
Ingeniería mas la mecanica Ingeniería mas la mecanica
Ingeniería mas la mecanica
 
ingenieria de sistemas
ingenieria de sistemasingenieria de sistemas
ingenieria de sistemas
 
Mecatronica
MecatronicaMecatronica
Mecatronica
 
Trabajo de integrales
Trabajo de integralesTrabajo de integrales
Trabajo de integrales
 
Presentación posibles carreras
Presentación posibles carrerasPresentación posibles carreras
Presentación posibles carreras
 
Computacion
ComputacionComputacion
Computacion
 

Similar to Ingenierías (20)

La mecatronica julian balaguera
La mecatronica julian balagueraLa mecatronica julian balaguera
La mecatronica julian balaguera
 
Ngenieria
NgenieriaNgenieria
Ngenieria
 
MECANICA AUTOMOTRIZ Y SUS AUTOS
MECANICA AUTOMOTRIZ  Y SUS AUTOSMECANICA AUTOMOTRIZ  Y SUS AUTOS
MECANICA AUTOMOTRIZ Y SUS AUTOS
 
Informatica Basica
Informatica BasicaInformatica Basica
Informatica Basica
 
Teoría de sistemas (INGENIERIA-SISTEMAS)
Teoría de sistemas (INGENIERIA-SISTEMAS)Teoría de sistemas (INGENIERIA-SISTEMAS)
Teoría de sistemas (INGENIERIA-SISTEMAS)
 
Identifique un tipo de industria.docx
Identifique un tipo de industria.docxIdentifique un tipo de industria.docx
Identifique un tipo de industria.docx
 
Aplicación de la ingeniería industrial
Aplicación de la ingeniería industrialAplicación de la ingeniería industrial
Aplicación de la ingeniería industrial
 
Tecnico, Tecnologo Y Profesional
Tecnico, Tecnologo Y ProfesionalTecnico, Tecnologo Y Profesional
Tecnico, Tecnologo Y Profesional
 
Taller 11
Taller 11Taller 11
Taller 11
 
Ingeniería industrial
Ingeniería industrialIngeniería industrial
Ingeniería industrial
 
Hugo ingeniería
Hugo ingenieríaHugo ingeniería
Hugo ingeniería
 
Presentacion 3
Presentacion 3Presentacion 3
Presentacion 3
 
Optimizacion
OptimizacionOptimizacion
Optimizacion
 
Fabiola optimizacion
Fabiola optimizacionFabiola optimizacion
Fabiola optimizacion
 
Fabiola optimizacion
Fabiola optimizacionFabiola optimizacion
Fabiola optimizacion
 
Ingeniería en sistemas
Ingeniería en sistemasIngeniería en sistemas
Ingeniería en sistemas
 
Ingeniera de sistemas
Ingeniera de sistemasIngeniera de sistemas
Ingeniera de sistemas
 
Presentación1 proyecto informatica
Presentación1 proyecto informaticaPresentación1 proyecto informatica
Presentación1 proyecto informatica
 
Ingenieria industrial
Ingenieria industrialIngenieria industrial
Ingenieria industrial
 
Fabiola optimizacion
Fabiola optimizacionFabiola optimizacion
Fabiola optimizacion
 

Recently uploaded

TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxlclcarmen
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxlupitavic
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfFrancisco158360
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptxFelicitasAsuncionDia
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfMaritzaRetamozoVera
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfPaolaRopero2
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Lourdes Feria
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñotapirjackluis
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dstEphaniiie
 
CLASE - La visión y misión organizacionales.pdf
CLASE - La visión y misión organizacionales.pdfCLASE - La visión y misión organizacionales.pdf
CLASE - La visión y misión organizacionales.pdfJonathanCovena1
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSYadi Campos
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arteRaquel Martín Contreras
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.amayarogel
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfAngélica Soledad Vega Ramírez
 

Recently uploaded (20)

TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
CLASE - La visión y misión organizacionales.pdf
CLASE - La visión y misión organizacionales.pdfCLASE - La visión y misión organizacionales.pdf
CLASE - La visión y misión organizacionales.pdf
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arte
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 

Ingenierías

  • 1. Ingenierías Ingeniería Industrial: La ingeniería industrial es una rama de la ingeniería que se ocupa del desarrollo, mejora, implantación y evaluación de sistemas integrados de gente, dinero, conocimientos, información, equipamiento, energía, materiales y procesos. También trata con el diseño de nuevos prototipos para ahorrar dinero y hacerlos mejores. La ingeniería industrial está construida sobre los principios y métodos del análisis y síntesis de la ingeniería y el diseño para especificar, predecir y evaluar los resultados obtenidos de tales sistemas. En la manufactura esbelta, los ingenieros industriales trabajan para eliminar desperdicios de todos los recursos. La ingeniería industrial emplea conocimientos y métodos de las ciencias matemáticas, físicas, sociales, políticas públicas, técnicas de gerencia etc. de una forma amplia y genérica, para determinar, diseñar, especificar y analizar los sistemas (en sentido amplio del término), y así poder predecir y evaluar sus resultados. El término industrial se ha prestado a malentendidos. Mientras que el término se aplicaba originalmente a la manufactura, se ha extendido a muchos otros sectores de servicios. La ingeniería industrial está estrechamente identificada también con la gestión de operaciones, ingeniería de sistemas o ingeniería de manufactura, una distinción que parece depender del punto de vista o motivos de quien la use. En el sector del cuidado de la salud los ingenieros industriales son conocidos comúnmente como ingenieros administradores o ingenieros en sistemas de salud. En el sector gobierno se les conoce como ingenieros politólogos formados por la ingeniería política. La ingeniería industrial en España agrupa bajo el mismo término de ingeniería industrial a otras actividades de ingeniería como ingeniería química, ingeniería eléctrica o ingeniería metalúrgica; el término ingeniería de organización industrial es el que se usa dentro de España para referirse a lo que fuera se llama ingeniería industrial. La ingeniería industrial abarca varias áreas de actividad, tales como: ciencias de la administración, procura de proyectos, gestión de cadenas de suministro, ingeniería de procesos, investigación de operaciones, ingeniería de sistemas, ergonomía, ingeniería de calidad y reingeniería de procesos. Es una actividad regulada en muchos países, por lo que para ejercerla se requiere una licencia o aprobación de un colegio de ingenieros. Algunos ejemplos de las aplicaciones de la ingeniería industrial son: el diseño de nuevos sistemas de trabajo en bancos, las mejoras de operaciones y emergencias en hospitales, la distribución global de productos, y la reducción y mejora de líneas de espera en bancos, hospitales, parques temáticos y sistemas de tráfico vehicular.
  • 2. Los ingenieros industriales usan comúnmente estadística y simuladores informáticos, especialmente simulación de eventos discretos, para su análisis y evaluación. Ingeniería Mecánica: La ingeniería mecánica es una rama de la ingeniería, que aplica las ciencias exactas, específicamente los principios físicos de la termodinámica, mecánica, ciencia de materiales, mecánica de fluidos y análisis estructural para el diseño y análisis de diversos elementos usados en la actualidad, tales como maquinarias con diversos fines (térmicos, hidráulicos, de transporte, de manufactura), así como también de sistemas de ventilación, vehículos motorizados terrestres, aéreos y marítimos, entre otras aplicaciones. La ingeniería mecánica es un campo muy amplio de la ingeniería que implica el uso de los principios de la física para el análisis, diseño, fabricación de sistemas mecánicos. Tradicionalmente, ha sido la rama de la ingeniería que mediante la aplicación de los principios físicos ha permitido la creación de dispositivos útiles, como utensilios y máquinas. Los ingenieros mecánicos usan principios como el calor, las fuerzas y la conservación de la masa y la energía para analizar sistemas físicos estáticos y dinámicos, contribuyendo a diseñar objetos. La Ingeniería Mecánica es la rama de las máquinas, equipos e instalaciones teniendo siempre en mente aspectos ecológicos y económicos para el beneficio de la sociedad. Para cumplir con su labor, la ingeniería mecánica analiza las necesidades, formula y soluciona problemas técnicos mediante un trabajo interdisciplinario, y se apoya en los desarrollos científicos, traduciéndolos en elementos, máquinas, equipos e instalaciones que presten un servicio adecuado, mediante el uso racional y eficiente de los recursos disponibles. En el plan de estudios de la ingeniería mecánica usualmente se encuentra:
  • 3. Cálculo diferencial e integral, álgebra lineal y ecuaciones diferenciales Estática y dinámica Termodinámica, Transferencia de calor Dibujo técnico, diseño mecánico, diseño y fabricación asistida por computadora Ciencia de materiales Mecánica de fluidos Tecnología mecánica Análisis numérico, método de los elementos finitos Turbo máquinas Teoría de control Estructuras metálicas, cimentaciones Diseño de máquinas Además incluye conocimientos básicos de electrónica y electricidad, química y conceptos de la ingeniería civil. Los campos de la ingeniería mecánica se dividen en una cantidad extensa de sub-disciplinas. Muchas de las disciplinas que pueden ser estudiadas en Ingeniería mecánica pueden tocar temas en comunes con otras ramas de la ingeniería. Un ejemplo de ellos son los motores eléctricos que se solapan con el campo de los ingenieros eléctricos o la termodinámica que también es estudiada por los ingenieros químicos. Los campos de la ingeniería mecánica pueden describirse de la siguiente forma: Ingeniería de producto y de manufactura Robótica industrial Meca trónica Manufactura flexible Mecanismos inteligentes Motores híbridos Nano máquinas Siderúrgica Biomecánica La ingeniería mecánica se extiende de tal forma que es capaz de abordar un problema con la racionalización de varios factores que pueden estar afectando y que son fundamentales para hallar determinada solución. Debido a la complejidad creciente de los análisis que se realizan en todas las ramas de la Ingeniería Mecánica, el cálculo asistido por ordenador ha ido adquiriendo siempre mayor protagonismo. Se ha producido una evolución en la representación de los sistemas físicos, pasando de esquematizar partes del sistema en modo aproximado a reproducir todo el conjunto en modo detallado. Este proceso ha sido posible en gran parte debido a la constante mejora de las prestaciones de los equipos informáticos, y a la mejora de los programas de cálculo.
  • 4. En el diseño de nuevos componentes, el uso de estas herramientas permite en la mayoría de los casos obtener resultados más precisos y sobre todo una reducción de costes al permitir analizar virtualmente el comportamiento de nuevas soluciones. En el proceso de análisis y diseño se utilizan herramientas de cálculo como el análisis mediante elementos finitos (FEA por sus siglas en inglés) o volúmenes finitos así como también la dinámica de fluidos computacional (CFD). El diseño de procesos de fabricación con ayuda de computadores (LEVA), permite que los modelos generados se puedan utilizar directamente para crear "instrucciones" para la fabricación de los objetos representados por los modelos, mediante máquinas de control numérico (CNC) u otros procesos automatizados, sin la necesidad de dibujos intermedios. En el campo de Análisis y Simulación existen asociaciones independientes que proporcionan información y elaboran normas de cálculo. Una de las más importante es la National Agency for Finite Element Methods and Standards (NAFEMS), organización sin ánimo de lucro constituida por más de 700 compañías de todo el mundo. La ingeniería mecánica ayuda en una mejor comodidad de los contribuyentes. Los siguientes son los paquetes de software de análisis y diseño más extendidos: ALGOR Solid Edge Unigraphics NX ABAQUS Autocad Autodesk Inventor ANSYS CATIA FLUENT LabVIEW LS-DYNA Maple MSC.Adams MSC.Nastran Matlab ProE RADIOSS SolidWorks Working model WorkXPlore 3D Vale la pena mencionar los software CAM (Computer Aided Manufacture) complementarios para el manejo de maquinaria asociada a la fabricación de piezas diseñadas mediante software CAD (Computer Aided Design).
  • 5. Ingeniería de Sistemas: La ingeniería de sistemas o ingeniería de los sistemas o ingeniería en sistemas es un modo de enfoque interdisciplinario que permite estudiar y comprender la realidad, con el propósito de implementar u optimizar sistemas complejos. Puede verse como la aplicación tecnológica de la teoría de sistemas a los esfuerzos de la ingeniería, adoptando en todo este trabajo el paradigma sistémico. La ingeniería de sistemas integra otras disciplinas y grupos de especialidad en un esfuerzo de equipo, formando un proceso de desarrollo estructurado. Una de las principales diferencias de la ingeniería de sistemas respecto a otras disciplinas de ingeniería tradicionales, consiste en que la ingeniería de sistemas no construye productos tangibles. Mientras que los ingenieros civiles podrían diseñar edificios o puentes, los ingenieros electrónicos podrían diseñar circuitos, los ingenieros de sistemas tratan con sistemas abstractos con ayuda de las metodologías de la ciencia de sistemas, y confían además en otras disciplinas para diseñar y entregar los productos tangibles que son la realización de esos sistemas. Otro ámbito que caracteriza a la ingeniería de sistemas es la interrelación con otras disciplinas en un trabajo transdisciplinario. De manera equivocada algunas personas confunden la ingeniería de sistemas con las ingenierías de computación o en informatica, cuando ésta es mucho más cercana a la electrónica y la mecánica cuando se aplica. Actualmente existe gran controversia respecto a los estudios que se realizan en las universidades, sobre todo en Sudamérica, pues los estudios son similares a los de Ingeniería de Computación o Informática.
  • 6. La ingeniería de sistemas es la aplicación de las ciencias matemáticas y físicas para desarrollar sistemas que utilicen económicamente los materiales y fuerzas de la naturaleza para el beneficio de la humanidad. Una definición especialmente completa -y que data de 1974- nos la ofrece un estándar militar de las fuerzas aéreas estadounidenses sobre gestión de la ingeniería (MIL-STD-499B Systems Engineering). Ingeniería de sistemas es la aplicación de esfuerzos científicos y de ingeniería para: transformar una necesidad de operación en una descripción de parámetros de rendimiento del sistema y una configuración del sistema a través del uso de un proceso interactivo de definición, síntesis, análisis, diseño, prueba y evaluación; integrar parámetros técnicos relacionados para asegurar la compatibilidad de todas las interfaces de programa y funcionales de manera que optimice la definición y diseño del sistema total; integrarse factores de fiabilidad, mantenibilidad, seguridad, supervivencia, humanos y otros en el esfuerzo de ingeniería total a fin de cumplir los objetivos de coste, planificación y rendimiento técnico. Ingeniería de Sistemas es un conjunto de metodologías para la resolución de problemas mediante el análisis, diseño y gestión de sistemas. Es el conjunto de recursos humanos y materiales a través de los cuales se recolectan, almacenan, recuperan, procesan y comunican datos e información con el objetivo de lograr una gestión eficiente de las operaciones de una organización. Muchos de los campos relacionados podrían ser considerados con estrechas vinculaciones a la ingeniería de sistemas. Muchas de estas áreas han contribuido al desarrollo de la ingeniería de sistemas como área independiente.  Sistemas de Información Un sistema de información o (SI) es un conjunto de elementos que interactúan entre sí con el fin de apoyar las actividades de una empresa o negocio. No siempre un Sistema de Información debe estar automatizado (en cuyo caso se trataría de un sistema informático), y es válido hablar de Sistemas de Información Manuales. Normalmente se desarrollan siguiendo Metodologías de Desarrollo de Sistemas de Información.... El equipo computacional: el hardware necesario para que el sistema de información pueda operar. El recurso humano que interactúa con el Sistema de Información, el cual está formado por las personas que utilizan el sistema. Un sistema de información realiza cuatro actividades básicas: entrada, almacenamiento, procesamiento y salida de información. es la actualizacion de datos reales y especificos para la agilizacion de operaciones en una empresa.
  • 7.  Investigación de operaciones La investigación de operaciones o (IO) se enseña a veces en los departamentos de ingeniería industrial o de matemática aplicada, pero las herramientas de la IO son enseñadas en un curso de estudio en Ingeniería de Sistemas. La IO trata de la optimización de un proceso arbitrario bajo múltiples restricciones. (Para artículos de discusión (en inglés) ver: [1] y [2]). Se presentan las ideas fundamentales en las que se basa el enfoque de sistemas, los tipos de problemas de sistemas y las metodologías más adecuadas para abordarlos.  Ingeniería de sistemas cognitivos La ingeniería de sistemas cognitivos es una rama de la ingeniería de sistemas que trata los entes cognitivos, sean humanos o no, como un tipo de sistemas capaces de tratar información y de utilizar recursos cognitivos como la percepción, la memoria o el procesamiento de información. Depende de la aplicación directa de la experiencia y la investigación tanto en psicología cognitiva como en ingeniería de sistemas. La ingeniería de sistemas cognitivos se enfoca en cómo los entes cognitivos interactúan con el entorno. La ingeniería de sistemas trabaja en la intersección de: 1. El desarrollo de la sociedad en esta nueva era 2. Los problemas impuestos por el mundo 3. Las necesidades de los agentes (humano, hardware, software) 4. La interacción entre los varios sistemas y tecnologías que afectan (y/o son afectados por) la situación. Algunas veces designados como ingeniería humana o ingeniería de factores humanos, esta rama además estudia la ergonomía en diseño de sistemas. Sin embargo, la ingeniería humana suele tratarse como otra especialidad de la ingeniería que el ingeniero de sistemas debe integrar. Habitualmente, los avances en ingeniería de sistemas cognitivos se desarrollan en los departamentos y áreas de Informática, donde se estudian profundamente e integran la inteligencia artificial, la ingeniería del conocimiento y el desarrollo de interfaces hombre-máquina (diseños de usabilidad) de la ciencia El Ingeniero de sistemas habitualmente aprende a programar, para dirigir a programadores y al momento de la creacion de un programa debe saber y tener en cuenta los metodos básicos como tal, por eso es importante que aprenda a programar pero su función realmente es el diseño y planeacion, y todo lo referente al sistema o redes, su mantenimiento y efectividad, respuesta y tecnología.
  • 8. Ingeniería Química: La Ingeniería química es una rama de la ingeniería, que se encarga del diseño, manutención, evaluación, optimización, simulación, planificación, construcción y operación de plantas en la industria de procesos, que es aquella relacionada con la producción de compuestos y productos cuya elaboración requiere de sofisticadas transformaciones físicas y químicas de la materia. La ingeniería química también se enfoca al diseño de nuevos materiales y tecnologías, es una forma importante de investigación y de desarrollo. Además es líder en el campo ambiental, ya que contribuye al diseño de procesos ambientalmente amigables y procesos para la descontaminación del medio ambiente. Plan de estudios: la ingeniería química se fundamenta en las ciencias básicas como matemática (algebra lineal o superior, cálculo, ecuaciones diferenciales, métodos numéricos, matemática avanzada), las ciencias básicas de la ingeniería química (termodinámica, fenómenos de transporte, cinética química), y disciplinas aplicadas tales como ingeniería de procesos, diseño de reactores, diseño de equipos para procesos químicos, y procesos de separación. También se van incorporando elementos de ciencias ambientales, biotecnología, ingeniería de alimentos e ingeniería de materiales. La ingeniería química implica en gran parte el diseño y el mantenimiento de los procesos químicos para la fabricación a gran escala. Emplean a los ingenieros químicos (al igual que los ingenieros de petróleo aunque en menor medida) en esta rama generalmente bajo título de "ingeniero de proceso". El desarrollo de los procesos a gran escala característicos de economías industrializadas es una hazaña de la ingeniería química, no de la química en su más pura expresión. De hecho, los ingenieros químicos son responsables de la disponibilidad de los materiales de alta calidad modernos que son esenciales para hacer funcionar una economía industrial.
  • 9. Por otro lado, la química es la ciencia que estudia (a escala laboratorio) la materia, sus cambios y la energía involucrada. La importancia radica en que todo lo que nos rodea es materia. El ingeniero químico participa de una manera importante en lo relacionado al diseño y la administración de todo el proceso químico a escala industrial que permite satisfacer una necesidad partiendo de materias primas hasta poner en las manos del consumidor un producto final. La presencia del profesional de la ingeniería química la podemos ver en áreas tales como la producción, control de procesos, control de calidad, seguridad industrial, apoyo técnico-legal, seguridad e higiene, alimentos, cosmético y ecología en donde plantea, diseña, construye, opera y controla unidades para disminuir el impacto contaminante de las actividades humanas.  Aplicaciones Las aplicaciones que puede realizar un ingeniero químico son variadas; pueden mencionarse las siguientes a modo de ejemplo: Estudios de factibilidad técnico-económica Especificación / Diseño de equipos y procesos Construcción / Montaje de equipos y plantas Control de producción / Operación de plantas industriales Gerencia y administración Control de calidad de productos Compras y comercialización Ventas técnicas Control ambiental Investigación y desarrollo de productos y procesos Capacitación de recursos humanos  Sectores industriales Entre los sectores industriales más importantes que emplean a profesionales de la ingeniería química se encuentran: Industria química / Petroquímica Gas y petróleo / Refinerías Alimentos y bebidas / Biotecnología Siderúrgica / Metalúrgica / Automotriz Materiales / Polímeros / Plásticos Generación de energía Otras (farmacéutica, textil, papelera, minera, etc.)
  • 10.  Diferencia entre la química y la ingeniería química La diferencia entre la química y la ingeniería química puede ser ilustrada considerando el ejemplo de producir el jugo de naranja. Un químico investiga los componentes moleculares y atómicos de la naranja, las reacciones y las propiedades químicas y fisicoquímicas de la naranja y sus componentes; además busca nuevas opciones para sintetizar los productos y subproductos. El ingeniero químico diseña los equipos para obtener a gran escala los productos y subproductos, garantiza que la calidad de él corresponda a las especificaciones químicas y fisicoquímicas. También, el ingeniero químico diseña nuevos procesos para la mejora de los actuales, debe estudiar los procesos que menos contaminen el ambiente y comprender la termodinámica y las operaciones unitarias de transferencia de cantidad de materia, energía y cantidad de movimiento. Además debe diseñar procesos y equipos que preserven la integridad del personal que los usa mediante estudios de seguridad industrial. Los Ingenieros Químicos están involucrados en todas las actividades que se relacionen con el procesamiento de materias primas (de origen animal, vegetal o mineral) que tengan como fin obtener productos de mayor valor y utilidad. Por lo tanto, pueden desarrollar sus actividades en: Plantas industriales / Empresas Productivas Empresas de construcción y/o montaje de plantas y equipos Empresas proveedoras de servicios técnicos (consultoría, control de calidad, mantenimiento, etc.) Organismos gubernamentales o no gubernamentales de acreditación, control y estándares Instituciones de educación superior Centros de Investigación y Desarrollo (Industriales / Académicos) Durante la planeación de un proceso de manufactura el ingeniero químico debe: definir los problemas, determinar el objetivo, considerar las limitaciones de tiempo, materiales y costo y, en consecuencia, diseñar y desarrollar la planta de proceso. Una vez instalado el equipo de proceso, el ingeniero químico permanece con frecuencia en la planta para supervisar y administrar la operación, así como para asegurar el control de calidad y el mantenimiento de la producción. Por lo tanto, el desarrollo profesional del ingeniero químico comprende los siguientes campos de actividad: Control de procesos, automatización e instrumentación. Informática, programación y manejo de computadoras. Energéticos, fuentes alternas de energía
  • 11. Control de contaminación. Simulación de procesos. Síntesis de procesos. Productividad y calidad. Polímeros, plásticos y cerámicos. Biotecnología. Investigación. Manejo de desechos tóxicos. Administración y ventas. Ingeniería Metalúrgica: La ingeniería metalúrgica es la rama de la Ingeniería de Materiales que se encarga de tratar los elementos metálicos y no metálicos contenidos en los minerales mediante procesos físicos y químicos (procesamiento de minerales), así como la producción de materiales utilizando éstos elementos, la extracción, el procesamiento y la fundición del hierro para la producción de acero se denomina
  • 12. siderurgia, y permite obtener materiales para construcción y trabajo en metal-mecánica, además de transformación en productos netamente finales (conformado de metales), por ejemplo los diferentes productos utilizados en la vida diaria hechos de metales. También se considera dentro de la metalurgia las operaciones electrolíticas, tratamientos térmicos, fabricación de aleaciones y otros aspectos relacionados netamente con los metales y en los no metales la producción de cerámicas, refractarios y diversos cristales. La ingeniería metalúrgica se encarga de la utilización de los metales para realizar productos útiles al hombre. Se realizan aleaciones metálicas para forma diferentes productos que serán utilizados en la inmensa gama del mercado. Los procesos metalúrgicos comprenden las siguientes fases: Obtención del metal a partir del mineral que lo contiene en estado natural, separándolo de la ganga. El afino, enriquecimiento o purificación: eliminación de las impurezas que quedan en el metal. Elaboración de aleaciones. Otros tratamientos del metal para facilitar su uso. Operaciones básicas de obtención de metales: Operaciones físicas: triturado, molido, filtrado (a presión o al vacío), centrifugado, decantado, flotación, disolución, destilación, secado, precipitación física. Operaciones químicas: tostación, oxidación, reducción, hidrometalurgia, electrólisis, hidrólisis, lixiviación mediante reacciones ácido-base, precipitación química, electrodeposición y cianuración. Dependiendo el producto que se quiera obtener, se realizarán distintos métodos de tratamiento. Uno de los tratamientos más comunes es la mena ya que es conveniente en el aspecto económico, consiste en la separación de los materiales de desecho, normalmente entre los materiales hay arcilla y minerales de silicatos, a esto se le puede denominar como ganga. Para ello, es útil el uso del método de la flotación que consiste que durante el proceso que la mena se muele y se vierte en agua que contiene aceite y detergente. Esta mezcla liquida al batir se va a producir una espuma que va a trabajar con la ayuda del aceite las partículas del mineral de forma selectiva y donde va ir arrastrando hacia la superficie de la espuma dichas partículas y dejando en el fondo la ganga. Otra forma de flotación es el proceso que pueden emplearse las propiedades magnéticas de los minerales, esto se puede hacer por medio de imanes ya que estos minerales son ferromagnéticos, donde atrae al mineral dejando intacto a la ganga. Para su extracción de la mena se utiliza las amalgamas que es la aleación de mercurio con otro metal o metales. Se disuelve la plata o el oro, contenido en la mena para formar una amalgama liquida, que se separa con facilidad del resto de la mena. Es por ello que se usa el oro y la plata se recuperan a través de la destilación del mercurio.1
  • 13. Ingeniería Electrónica: La Ingeniería electrónica es una rama de la ingeniería, basada en la electrónica, que se encarga de resolver problemas de la ingeniería tales como el control de procesos industriales, la transformación de la electricidad para el funcionamiento de diversos dispositivos y tiene aplicación en la industria, en las telecomunicaciones, en el diseño y análisis de instrumentación electrónica, microcontroladores y microprocesadores. Esta ingeniería es considerada un área de estudio de la ingeniería eléctrica en los Estados Unidos y Europa. La ingeniería electrónica es el conjunto de conocimientos técnicos, tanto teóricos como prácticos que tienen por objetivo la aplicación de la tecnología electrónica para la resolución de problemas prácticos. La electrónica es una rama de la física que trata sobre el aprovechamiento y utilidad del comportamiento de las cargas eléctricas en los diferentes materiales y elementos como los semiconductores. La ingeniería electrónica es la aplicación práctica de la electrónica para lo cual incorpora además de los conocimientos teóricos y científicos otros de índole técnica y práctica sobre los semiconductores así como de muchos dispositivos eléctricos además de otros campos del saber humano como son dibujo y técnicas de planificación entre otros. Entre la ingeniería electrónica y la ingeniería eléctrica existen similitudes fundamentales, pues ambas tienen como base de estudio el fenómeno eléctrico. Sin embargo la primera se especializa en circuitos de bajo voltaje entre ellos los semiconductores, los cuales tienen como componente fundamental al transistor o el comportamiento de las cargas en el vacío como en el caso de las viejas válvulas termoiónicas y la ingeniería eléctrica se especializa en circuitos eléctricos de alto voltaje como se ve en las líneas de transmisión y en las estaciones eléctricas. Ambas ingenierías poseen aspectos comunes como pueden ser los fundamentos matemáticos y físicos, la teoría de circuitos, el estudio del electromagnetismo y la planificación de proyectos. Otra diferencia fundamental reposa en el hecho de que la ingeniería electrónica estudia el uso de la energía eléctrica para transmitir, recibir y procesar
  • 14. información, siendo esta la base de la ingeniería de telecomunicación, de la ingeniería informática y la ingeniería de control automático. El punto concordante de las ingenierías eléctrica y electrónica es el área de potencia. La electrónica se usa para convertir la forma de onda de los voltajes que sirven para transmitir la energía eléctrica; la ingeniería eléctrica estudia y diseña sistemas de generación, distribución y conversión de la energía eléctrica, en suficientes proporciones para alimentar y activar equipos, redes de electricidad de edificios y ciudades entre otros. Las áreas específicas en que el ingeniero electrónico puede contribuir al desarrollo se puede resumir en:  Electrónica de potencia Esta rama consiste en adaptar y transformar la electricidad, para su uso posterior en dispositivos eléctricos y electrónicos, tales como motores eléctricos y servomotores. Se usan principalmente resistencias, rectificadores, Inversores, cicloconversores y choppers.  Computadores o electrónica digital La automatización creciente de sistemas y procesos que conlleva necesariamente a la utilización eficiente de los computadores digitales. Los campos típicos de este ingeniero son: redes de computadores, sistemas operativos y diseño de sistemas basado en microcomputadores o microprocesadores, que implica diseñar programas y sistemas basados en componentes electrónicos. Entre las empresas relacionadas con estos tópicos se encuentran aquellas que suministran equipos y desarrollan proyectos computacionales y las empresas e instituciones de servicios.  Control de procesos industriales La actividad se centra aquí en la planificación, diseño, administración, supervisión y explotación de sistemas de instrumentación, automatización y control en líneas de montaje y procesos de sistemas industriales, tales como empresas papeleras, pesqueras, textiles, de manufactura, mineras y de servicios. El control automático moderno emplea en forma intensiva y creciente computadores en variados esquemas. Asimismo, la disciplina envuelve sistemas de índoles no convencionales tales como robótica, sistemas expertos, sistemas neuronales, sistemas difusos, sistemas artificiales evolutivos y otros tipos de control avanzado.  Telecomunicaciones El procesamiento y transmisión masiva de la información requiere de la planificación, diseño y administración de los sistemas de radiodifusión, televisión, telefonía, redes de computadores, redes de fibra óptica, las redes satelitales y en forma cada vez más significativa los sistemas de comunicación inalámbricos, como la telefonía celular y personal.
  • 15.  Ingeniería de componentes Gran parte del proceso de producción en las empresas de electricidad y electrónica está relacionado con el diseño de circuitos. En este proceso es de gran importancia un conocimiento especializado de los componentes, lo que ha dado lugar a una especialidad dentro de la ingeniería electrónica denominada ingeniería de componentes. En esta especialidad el ingeniero deberá encargarse de una serie de funciones en las que cabe destacar las siguientes: Asesorar a los diseñadores: Para ello deberá tener conocimientos profundos sobre componentes tanto a nivel teórico como práctico. Además deberá estar constantemente al día para conocer las novedades del mercado así como sus tendencias. Redactar normas: Relacionadas con el manejo de los componentes desde que entran en la empresa hasta que pasan a la cadena de montaje. Elaborar una lista de componentes preferidos. Seleccionar componentes: Deberá elegirlo de entre la lista de preferidos y si no está, realizar un estudio de posibles candidatos. Con ello se persigue mejorar los diseños. Relacionarse con los proveedores: Para resolver problemas técnicos o de cualquier otro tipo. En la ingeniería de componentes se tiene en cuenta los materiales empleados así como los procesos de fabricación, por lo que el ingeniero deberá tener conocimientos al respecto. Ingeniería Civil: La ingeniería civil es una rama de la Ingeniería, que aplica los conocimientos de física, química, cálculo, geografía y geología a la elaboración de estructuras, obras hidráulicas y de transporte. La denominación "civil" se debe a su origen diferenciado de la ingeniería militar.
  • 16. Tiene también un fuerte componente organizativo que logra su aplicación en la administración del ambiente urbano principalmente, y frecuentemente rural; no sólo en lo referente a la construcción, sino también, al mantenimiento, control y operación de lo construido, así como en la planificación de la vida humana en el ambiente diseñado desde esta misma. Esto comprende planes de organización territorial tales como prevención de desastres, control de tráfico y transporte, manejo de recursos hídricos, servicios públicos, tratamiento de basuras y todas aquellas actividades que garantizan el bienestar de la humanidad que desarrolla su vida sobre las obras civiles construidas y operadas por ingenieros civiles. Los conocimientos necesarios para ejercer de ingeniero civil son: Conocimientos y bases tanto de geometría como todo tipo de cálculos y manipulaciones matemáticas que sean aplicables en problemas de ingeniería. Conocimientos de cálculo de esfuerzos y deformaciones en estructuras ante diferentes acciones (comportamiento de las vigas de un puente ante el paso de un tren, de una presa ante la presión hidrostática del agua que retiene, de una zapata al transmitir el peso de la estructura que sustenta al terreno.) Conocimientos de los materiales que se utilizarán en la ejecución de la obra (resistencia, peso, envejecimiento, etc.). Conocimientos del comportamiento del terreno ante las solicitudes de las estructuras que se apoyen en él (capacidad portante, estabilidad ante dichas solicitaciones, etc.). Conocimientos de Hidrología para el cálculo de avenidas o caudales para el diseño de presas o azudes, dimensionamiento de luces de puentes, etc. Conocimiento de técnicas de cálculo de aforos para el dimensionamiento de las carreteras, etc. Conocimientos de estética, de historia, de arte, del paisaje, etc. Conocimientos de urbanismo y de ordenación del territorio, que le permiten comprender las fuertes implicaciones territoriales y de ordenación poblacional que suponen las grandes obras de infraestructura. Y, por supuesto, conocimiento de los procedimientos, técnicas y maquinaria necesarios para la aplicación de los conocimientos anteriores. En general, existe un gran número de posibles soluciones técnicas para un mismo problema y muchas veces ninguno de ellas es claramente preferible a otra. Es la labor de un Ingeniero Civil conocer todas ellas para descartar las menos adecuadas y estudiar únicamente aquellas más prometedoras, ahorrando así tiempo y dinero. Es también labor del Ingeniero Civil el conocimiento de las posibles formas de ejecución de la solución adoptada o de la maquinaria disponible para ello. Debe, además, tener los conocimientos necesarios para evaluar los posibles problemas que se puedan presentar en la obra y adoptar la decisión correcta, considerando, entre otros, aspectos de carácter social y medio ambiental. Por todo ello, además de una sólida formación, es vital en la labor de un Ingeniero Civil una dilatada experiencia laboral, que le permita reconocer a simple vista el problema y adoptar soluciones que hayan demostrado su fiabilidad en el pasado. Su campo de aplicación es muy amplio. Estarían, por ejemplo, las infraestructuras del transporte:
  • 17. Aeropuertos Autovías Carreteras Vías férreas Puertos Puentes Redes de transporte urbano Las obras hidráulicas: Alcantarillado Azudes Canales para el transporte de agua potable o regadío Canales de navegación Canalizaciones de agua potable Centrales hidroeléctricas Depuradoras Diques Esclusas Muelles. Presas La intervención sobre problemas de estabilidad del terreno. Las estructuras que componen las obras anteriores: Terraplenes Desmontes Obras de contención de terreno Túneles Zapatas Pilares Vigas Estribos de puentes En general, las obras de ingeniería civil implican el trabajo una gran cantidad de personas (en ocasiones cientos y hasta miles) a lo largo de lapsos que abarcan desde unas pocas semanas o meses hasta varios años. Debido al elevado coste de los trabajos que se acometen (piénsese en el coste de una autovía o de una línea de ferrocarril) buena parte de los trabajos que se realizan son para el Estado, o bien para grandes compañías que pretenden la explotación de una infraestructura a largo plazo (autopistas y túneles de peaje, compañías de ferrocarril, etcétera). Sin embargo, sus técnicas son también aplicadas para obras semejantes a las anteriores pero de más pequeña escala, como podrían ser:
  • 18. La contención de un terreno difícil en la excavación para la cimentación de un edificio. La ejecución de la estructura de un edificio. El diseño y ejecución de los sistemas de distribución de agua potable y alcantarillado de una pequeña población (incluyendo las estaciones de tratamiento de agua potable (ETAP), equipos de bombeo, estaciones de depuración de aguas residuales (EDAR), etc. El diseño y urbanización de las calles de una pequeña población Además, son también competencia de un Ingeniero Civil: La planificación, diseño y control de los sistemas de transporte urbano, incluyendo el diseño de intercambiadores y la creación de nuevas líneas o modificación de las existentes. Adopción de nuevos sistemas de transporte que no existan en ese momento, como líneas de metro o metro ligero (más comúnmente conocido como tranvía). Planificación, ejecución y administración de plantas de tratamiento o incineración de residuos y vertederos. Labores auxiliares de ingeniería (control de calidad, ensayos de laboratorio, supervisión de temas de seguridad y salud). Mantenimiento de todas las anteriores De esta forma, un Ingeniero Civil no se limita a las grandes obras de infraestructura, muy raras debido a su elevado coste. Ingeniería de Telecomunicaciones: La Ingeniería de Telecomunicaciones es una rama de la ingeniería, que resuelve problemas de transmisión y recepción de señales e interconexión de redes. El término telecomunicaciones se refiere a la comunicación a distancia a través de la propagación de ondas electromagnéticas. Esto incluye muchas tecnologías, como radio, televisión, teléfono, comunicaciones de datos y redes informáticas. La
  • 19. definición dada por la Unión Internacional de Telecomunicaciones (ITU, International Telecommunication Union) para telecomunicación es toda emisión, transmisión y recepción de signos, señales, escritos e imágenes, sonidos e informaciones de cualquier naturaleza, por hilo, radioelectricidad, medios ópticos u otros sistemas electromagnéticos. El segundo ciclo de la titulación lo componen las especialidades de Telemática, Comunicaciones, Electrónica y Robótica. Un sistema de telecomunicaciones está compuesto por el emisor de información, el canal de transmisión y el receptor de la información. El emisor es un dispositivo que transforma o codifica el mensaje en un fenómeno físico: la señal. El canal o medio transmite dicha señal, y el receptor hace el proceso inverso al emisor para obtener la información. Las funciones del emisor siempre implican de uno u otro modo la codificación de la información y su adaptación al canal. El canal de transmisión, por razones físicas, modifica o degrada de algún modo la señal en su trayecto. El receptor ha de realizar las funciones de detectar la señal, recomponerla y decodificarla con el fin de extraer la información. En este proceso siempre existe una posibilidad de error, que la ingeniería de telecomunicaciones trata de minimizar. A modo de ejemplo familiar de un sistema de telecomunicación podemos considerar la comunicación vocal entre personas. Este caso podemos descomponerlo así: El emisor: persona que habla. La consciencia de una persona quiere transmitir un mensaje (idea o concepto), el cerebro lo codifica en palabras de un idioma y se lo "envía" a la boca para que lo pronuncie, quedando finalmente codificado en una serie de sonidos producidos los las cuerdas vocales y órganos de fonación. El medio está compuesto por la capa de aire que existe entre los dos intervinientes. Por él transcurren la vibraciones emitidas, que pueden ser afectadas de distintas maneras por ruido ambiente, ecos, otras conversaciones... El receptor está compuesto por el conjunto oído/cerebro. El oído convierte las vibraciones a impulsos eléctricos, que son procesados por el cerebro con el fin de extraer el mensaje, del que informa a la "consciencia". En otros casos, a modo de ejemplo, la comunicación se puede realizar entre faxes, teléfonos, teclado- impresora, cámara-pantalla... y el canal de comunicación puede estar compuesto por hilos, ondas de radio, fibra óptica, satélite... Según el sentido de la transmisión podemos clasificar la comunicación en unidireccional (del emisor al receptor) u bidireccional (comunicación en ambos sentidos). La topología de una telecomunicación puede ser punto a punto y punto a multipunto (llamada difusión en el caso extremo con muchos receptores y con transmisión unidireccional).
  • 20. El problema intrínseco de la comunicación se presenta cuando queremos transmitir información de manera rápida o entre dos puntos lejanos, o ambas cosas a la vez. Ese es el caso que ha hecho desarrollar la ingeniería de telecomunicaciones.1 Una definición general que permite aproximarse al perfil de un Ingeniero concibe al mismo como el profesional que, con una sólida base en ciencias básicas, puede integrar y proyectar los principios de la ingeniería para plantear soluciones a problemas del ámbito tecnológico usando como herramientas la formulación de modelos matemáticos, el diseño y el cálculo. En particular, el Ingeniero de Telecomunicaciones puede definirse como un profesional cuya formación lo faculta para planificar, proyectar, diseñar y calcular sistemas, redes y servicios de generación, transmisión, detección, manejo y gestión de teleinformación. Incluye también una sólida formación en las áreas de la administración y economía que lo habilitan para dirigir, organizar y explotar servicios de telecomunicaciones y para ejecutar, supervisar y evaluar proyectos relacionados con el área. En particular, la carrera de Ingeniería de Telecomunicaciones aspira a formar un graduado con un perfil técnico gerencial, que sea creativo, innovador, competitivo, emprendedor, competente para el trabajo en equipo, con sensibilidad hacia los problemas sociales y con potencialidad para incidir en sus soluciones. Uno de los papeles del ingeniero de telecomunicaciones en cuanto al diseño de nuevos sistemas de comunicación es analizar las propiedades físicas del medio de transmisión. El profesional ocupa hoy en día son las redes digitales y analógicas a lo largo y ancho del planeta (océanos incluidos) donde existan personas que necesiten comunicarse. Su tarea es diseñar, instalar, operar y mantener equipos y redes de difusión de Radio y Televisión, Redes Telefónicas fijas (pares y coaxiales de cobre), teléfonos móviles y Globales mediante teléfonos satelitales, redes de comunicación de datos privadas y públicas. Se utiliza todos los medios disponibles, cobre, fibra óptica, radios y satélites, logrando redes escalables y racionalizando las inversiones de infraestructura. En los tres últimos años, las redes que más crecieron en capilaridad y capacidad de transporte son las redes de telefonía celular y de transporte de Internet, las que utilizan todos las tecnologías antes citadas. Creando una revolución en las comunicaciones entre personas e instituciones como jamás ha disfrutado la humanidad, permitiendo una globalización y democratización de la cultura. Otro aspecto de las telecomunicaciones es la progresiva informatización de la actividad humana, posibilitando el crecimiento de las demás ramas del saber y actividad humanas. Si bien todavía tenemos casos donde muchos países no pueden desplegarse redes de comunicaciones y otros donde se ejerce la censura, el futuro es prometedor.
  • 21. Los sistemas de comunicaciones están diseñados para comunicarse a través de órganos sensoriales humanos (principalmente los de Percepción visual y Percepción sonora), en los cuales se tiene en cuenta las características psicológicas y fisiológicas de la percepción humana, el ejemplo más común que podemos citar el sonido de campanilla que escuchamos cuando llamamos por teléfono, si bien técnicamente no es necesario si lo necesita la persona que espera ser atendida. Por otra parte los sistemas se diseñan utilizando la capacidad de nuestros órganos sensoriales de integrar la información, como ejemplo la transmisión de televisión que utiliza la remanencia visual de los ojos para transmitir menos información, abaratando el costo de los receptores y transmisores. Lo mismo sucede con la telefonía celular y la comunicación por VoIP utilizando internet como vínculo de bajo costo. Actualmente en países cuyos habitantes poseen un mayor poder adquisitivo, ante ciertos tipos de defectos, a pesar de ser objetivamente razonables en función del costo beneficio, reclaman a los operadores una mayor calidad de servicio, ejemplos de ello son: Televisión de Alta Definición, vídeo sobre demanda, Banda Ancha en servicios de internet, mayor calidad y sofisticación de telefonía celular como 3G, equipos de interfaz más sofisticados con más y mejores funciones, un ejemplo son los teléfonos celulares que hoy pueden incluir: captura de video, cámara fotográfica, variedad de tonos de alerta, vibrador, trunking, grabador de voz, internet por WiMax, agenda y capacidad de realizar pagos como una tarjeta de crédito. De todos modos existe un compromiso entre reducción de costes y las demandas de los usuarios de sistemas de gran calidad, lo que consiste una importante consideración de cara al diseño de estos sistemas por parte de los grandes operadores de telecomunicaciones que deberán seguir indefectiblemente las regulaciones de los distintos gobiernos y de los organismos internacionales como La ITU. En la actualidad el estudio de la ingeniería de Telecomunicaciones está descompuesto en dos ciclos, que estudian estas áreas de conocimiento:2 Primer ciclo (común con otras ingenierías) de tres años de duración o Física o Programación o Matemáticas o Circuitos electrónicos o Electrotecnia y sistemas de energía o Electricidad y magnetismo o Sistemas lineales o Comunicaciones digitales o Inglés o Redes de comunicaciones o Sistemas digitales o Transmisión de datos Segundo ciclo con dos años de duración o Arquitectura de los ordenadores
  • 22. o Campos electromagnéticos o Diseño de circuitos y sistemas electrónicos o Electrónica de comunicaciones o Radiación y propagación o Redes de ordenadores o Tratamiento digital de señales o Comunicaciones ópticas o Instrumentación electrónica o Organización de empresas o Ingeniería y sociedad Este segundo ciclo a completarse con las asignaturas correspondientes a una de las siguientes especialidades: Comunicaciones Electrónica Telemática Bioingeniería Gestión de la Tecnología Sistemas Audiovisuales Ingeniería Eléctrica: La ingeniería eléctrica es el campo de la ingeniería que se ocupa del estudio y la aplicación de la electricidad, la electrónica y el electromagnetismo. Aplica conocimientos de ciencias como la física y las matemáticas para generar, transportar, distribuir y utilizar la energía eléctrica. Dicha área de la ingeniería es reconocida como carrera profesional en todo el mundo y constituye una de las áreas fundamentales de la ingeniería desde el siglo XIX con la comercialización del telégrafo eléctrico y la generación industrial de energía eléctrica. El campo, ahora, abarca una serie de disciplinas
  • 23. que incluyen la electrotecnia, la electrónica, los sistemas de control, el procesamiento de señales y las telecomunicaciones. Dependiendo del lugar y del contexto en que se use, el término ingeniería eléctrica puede o no incluir a la ingeniería electrónica. Cuando se hace una distinción, generalmente se considera la ingeniería eléctrica para hacer frente a los problemas asociados sistemas eléctricos de gran escala, como los sistemas eléctricos de transmisión de energía y de control de motores, mientras que la ingeniería electrónica trata del estudio de sistemas eléctricos a pequeña escala, incluidos los sistemas electrónicos con semiconductores y circuitos integrados.1 La ingeniería eléctrica aplica conocimientos de ciencias como la física y las matemáticas. Considerando que esta rama de la ingeniería resulta más abstracta que otras, la formación de un ingeniero electricista requiere una base matemática que permita la abstracción y entendimiento de los fenómenos electromagnéticos. Tras este tipo de análisis ha sido posible comprender esta rama de la física, mediante un conjunto de ecuaciones y leyes que gobiernan los fenómenos eléctricos y magnéticos. Por ejemplo, el desarrollo de las leyes de Maxwell permite describir los fenómenos electromagnéticos y forman la base de la teoría del electromagnetismo. En el estudio de la corriente eléctrica, la base teórica parte de la ley de Ohm y las leyes de Kirchhoff. Además se requieren conocimientos generales de mecánica y de ciencia de materiales, para la utilización adecuada de materiales adecuados para cada aplicación. Un ingeniero electricista debe tener conocimientos básicos de otras áreas afines, pues muchos problemas que se presentan en ingeniería son complejos e interdisciplinares.