Käyttäjä- ja käyttäytymistietojen
hyödyntäminen suositusjärjestelmissä
User and behavioural data in
recommendation systems...
26.9.2013

2

Growth - Driven by Data
Linked data

Recommendations
Open data
Content
Own websites
and mobile apps

Gatheri...
26.9.2013

Trust

3

People find
more than they
expected
Service more
relevant and
easier to use

Higher
ARPU
Reduced
chur...
26.9.2013

What do consumers think
of recommendations?

4
26.9.2013

5

Which Recommendation Methods to Use?

User 1
User 2
User 3
User 4
User 5
User 6
User 7
…

Item 1
5
4
1

Item...
26.9.2013

6

Technology for content and knowledge based recommendations
An example of TV-program synopsis:

(1960) Lyhyte...
26.9.2013

7

Semantic profiles and recommendations in SP3/Mediatutka

New content and
semantic content
enrichment
Locatio...
26.9.2013

8

Recommendations Based on Collaborative Filtering
A generic self organizing method (UPCV), based on the
behav...
26.9.2013

9

Open Recommendation Initiative based on UPCV
Each party (service, user) owns all recommendation data related...
26.9.2013

VTT creates business from technology

10
Upcoming SlideShare
Loading in …5
×

User and behavioural data in recommendation system - Asta Bäck

381 views
244 views

Published on

Asta Bäck gave a presentation at the Smart Interaction Mobile and Media seminar, 24.9.2013

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
381
On SlideShare
0
From Embeds
0
Number of Embeds
8
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

User and behavioural data in recommendation system - Asta Bäck

  1. 1. Käyttäjä- ja käyttäytymistietojen hyödyntäminen suositusjärjestelmissä User and behavioural data in recommendation systems Asiakasseminaari 24.9.2013 Asta Bäck, VTT
  2. 2. 26.9.2013 2 Growth - Driven by Data Linked data Recommendations Open data Content Own websites and mobile apps Gathering Analysing Learning Acting
  3. 3. 26.9.2013 Trust 3 People find more than they expected Service more relevant and easier to use Higher ARPU Reduced churn Longer visits Willing to return
  4. 4. 26.9.2013 What do consumers think of recommendations? 4
  5. 5. 26.9.2013 5 Which Recommendation Methods to Use? User 1 User 2 User 3 User 4 User 5 User 6 User 7 … Item 1 5 4 1 Item 2 4 2 3 1 4 Item 3 4 1 Item 4 1 … Wellbeing Health 3 2 Collaborative filtering Content based recommendations Knowledge based recommendations Contextual recommendations Social recommendations Hybrid recommendations
  6. 6. 26.9.2013 6 Technology for content and knowledge based recommendations An example of TV-program synopsis: (1960) Lyhytelokuvassa esitellään suomalaista taideteollisuutta. Mukana ovat mm. Dora Jung, Kaj Franck ja Timo Sarpaneva. taideteollisuus Timo Sarpaneva Inferred meanings of keywords: http://www.yso.fi/onto/koko/p34662 Keyword extraction Semantic analysis of keywords http://dbpedia.org/resource/Timo_Sarpaneva Labels in different languages: konstindustri (sv), industrial art (en) Related concepts: käsi- ja taideteollisuus, lasitaide, muotoilu, taidekäsityö, sisustustaide… Broader concept: teollisuus Semantic expansion Entities: Person, Finnish industrial designers… Semantic recommendations
  7. 7. 26.9.2013 7 Semantic profiles and recommendations in SP3/Mediatutka New content and semantic content enrichment Location sensitive proactive notifications Recommendations Semantic user profiles and semantic enrichment of user metadata
  8. 8. 26.9.2013 8 Recommendations Based on Collaborative Filtering A generic self organizing method (UPCV), based on the behavior of individual users and user groups: no metadata; applicable to any item in any service easily converted to a hybrid recommender simple to understand and use; contains no secret sauce UPCV is able to provide: user-to-item recommendations (items for a user) item-to-item recommendations (items similar to an item) item-to-user recommendations (interested users for an item) user-to-user recommendations (users with similar behavior) Patents pending (FI, EPO, US)
  9. 9. 26.9.2013 9 Open Recommendation Initiative based on UPCV Each party (service, user) owns all recommendation data related to it Recommendation is based on all user activities, in any service Customership belongs to services - not e.g. to Google! Uncompromised privacy UPCV recommendation engine: Distributed architecture Simple HTTP REST API Small footprint Easy deployment
  10. 10. 26.9.2013 VTT creates business from technology 10

×