Unit 1 lesson 5

973 views
803 views

Published on

Published in: Education
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
973
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
25
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Unit 1 lesson 5

  1. 1. Unit 1: Background to Inferential Statistics Lesson 5: Measures of Distribution EDER 6010: Statistics for Educational Research Dr. J. Kyle Roberts University of North Texas Next Slide
  2. 2. Measures of Distribution Normal Distribution <ul><li>Characteristics: </li></ul><ul><li>Mean = Median = Mode </li></ul><ul><li>Skewness = 0 </li></ul><ul><li>Kurtosis = 0 </li></ul>Next Slide 34.13% 34.13% 13.59% 13.59% 2.14% 2.14%
  3. 3. Skewness “Distributional Shape and the Blind Date” Sum of all of the Z-scores cubed Number of people in the study Skewness = 0, distribution is symmetrical < 0, negatively skewed > 0, positively skewed Next Slide
  4. 4. Skewness Next Slide Positively Skewed Negatively Skewed No Skewness
  5. 5. Many Forms of Skewness Next Slide
  6. 6. Kurtosis and the Blind Date Kurtosis is the ratio of height to width relative to the normal curve Next Slide Height Small Medium Large Men       5’9” 142-151 148-160 155-176 5’10” 144-154 151-163 158-180 5’11” 146-157 154-166 161-184 6’ 149-160 157-170 164-188 6’1” 152-164 160-174 168-192 6’2” 155-168 164-178 172-197 6’3” 158-172 167-182 176-202 Women       5’4” 114-127 124-138 134-151 5’5” 117-130 127-141 137-155 5’6” 120-133 130-144 140-159 5’7” 123-136 133-147 143-163 5’8” 126-139 136-150 146-167 5’9” 129-142 139-153 149-170 5’10” 132-145 142-156 152-173
  7. 7. Kurtosis Sum of all of the Z-scores to the fourth power Number of people in the study Next Slide
  8. 8. Kurtosis Next Slide Kurtosis = 0 Kurtosis > 0, Leptokurtic Kurtosis < 0, Platykurtic
  9. 9. Infinite Number of Normal Distributions Next Slide
  10. 10. Unit 1: Background to Inferential Statistics Lesson 5: Measures of Distribution EDER 6010: Statistics for Educational Research Dr. J. Kyle Roberts University of North Texas

×