Your SlideShare is downloading. ×
Matemática Discreta - Parte VII estruturas algébricas
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Matemática Discreta - Parte VII estruturas algébricas

1,511
views

Published on

Published in: Education

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,511
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
41
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Módulo 6: Estruturas Matemáticas • Modelos matemáticos de fenômenos da natureza podem ser divididos em três grandes categorias: • Estruturas de Ordem <C, R> • Estruturas Algébricas <C, Op> • Estruturas Topológicas (Geometria, Análise) <C, P(C)> •UNIVERSIDADE FEDERAL DE CAMPINA GRANDE •CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA •DEPARTAMENTO DE SISTEMAS E COMPUTAÇÃO •Professor Ulrich Schiel
  • 2. Estruturas Algébricas •Estruturas Algébricas: - conjunto abstrato de objetos juntamente com operações e relações entre esses objetos e que obedecem certas regras. A = <C, Op, R> Em que Op é um conjunto de operações e R é um conjunto de relações Se R é vazio temos uma Álgebra, se Op é vazio temos um Modelo ou um Sistema Relacional
  • 3. Estruturas Algébricas • Estruturas Algébricas - Operações:  Uma operação (interna) * sobre um conjunto C, é uma função *:C×.. × C → C  Exemplos: A = <Z, +>; B = <Z, +, ≤>;  C = < Z, ≤ >; D = < N, succ, *, 0, 1, max, min >  Uma operação externa * de um domínio K sobre um conjunto C, é uma função * : K × C → C Exemplo:  E = < N, R2 , *>, com *: N×R2 → R2 , dado por *(k,(x,y)) = (kx,ky)
  • 4. Estruturas Algébricas • DEFINIÇÃO: • Uma Álgebra é um par <C, Op> com:  - C é um conjunto  - Op é um conjunto de operações sobre C NOTAÇÃO: dado uma álgebra <C,*>, com *:C × C → C para *(a,b) = c escrevemos a*b = c
  • 5. Estruturas Algébricas Propriedades das operações: - Dado uma álgebra <C,*> as seguintes propriedades podem ser válidas, para quaisquer x, y, z de C: x * y = y * x (comutativa) (x * y) * z = x * (y * z) (associativa) ∃ 1∈C (x * 1 = x) (identidade ou neutro à direita) ∀x ∈C ∃ x’ ∈C (x * x’ = 1) (inverso) Se houver outra operação + em C, ou seja, temos <C,*, ⊕>, pode valer a propriedade: x ⊕ (y * z) = (x ⊕ y) * (x ⊕ z) (distributiva-1) x * (y ⊕ z) = (x * y) ⊕ (x * z) (distributiva-2)
  • 6. Estruturas Algébricas • Estruturas Algébricas – Álgebras de Boole • Um exemplo notável de estrutura algébrica é a álgebra booleana ou Álgebra de Boole (George Boole, 1850), formulada inicialmente para modelar a lógica proposicional e utilizada posteriormente por Shannon (1938) para modelar circuitos eletrônicos (ou digitais).
  • 7. Álgebra Booleana →Uma Álgebra de Boole B é uma álgebra B = <B, +, ·, ‘, a, b> formada por →um conjunto não-vazio (domínio) B, →duas operações binárias + : B2 →B e · : B2 →B, →uma operação unária ‘ : B→B e →dois elementos distinguíveis de B, a e b,(funções 0-árias) satisfazendo as seguintes propriedades: → para todo x, y e z pertencentes à B vale • 1a. x+y = y+x 1b. x · y = y · x • 2a. (x+y)+z = x+(y+z) 2b. (x · y) · z = x · (y · z) • 3a. x+(y · z) = (x+y)·(x+z) 3b. x · (y+z) = (x · y)+(x · z) • 4a. x+a = x 4b. x · b = x • 5a. x+x’ = b 5b. x · x’ = a
  • 8. Álgebra Booleana • Exemplo 1: B1 = <{0,1}, +, ·, ‘, 0, 1>, onde: • x+y = max(x,y), x · y = min(x,y), 0’=1 e 1’=0. • Exemplo 2: B2 = <{∅, {1}, {2}, {1,2}}, ∪, ∩, ‘, ∅, {1,2} > • Exemplo 3: B3 = <P(S), ∪, ∩, ‘, ∅, S>, para qualquer S • Exemplo 4: B4= <{F,V}, OR, AND, NOT, F, V>.
  • 9. Propriedades de uma àlgebra de Boole • Demonstre as seguintes propriedades para uma álgebra de Boole B = <B, +, ·, ‘, a, b> : 1. x+x = x, para todo x ∈ B (Idempotência) 2. x+b = b, para todo x ∈ B 3. (x ’) ’ = x, para todo x ∈ B (involução) 4. x+(x · y) = x, para todo x, y ∈ B 5. (x+y)’ = x ’ · y ’ e (x·y)’ = x’ + y’ (Leis de De Morgan) 1. Variante: x.y=(x’+y’)’ e x+y=(x’.y’)’ 6. O elemento neutro é único.
  • 10. Álgebra Booleana – conjuntos completos de operadores • Considerando a álgebra de Boole B4= <{F,V}, OR, AND, NOT, F, V>. pode-se mostrar que toda expressão booleana pode ser realizada com um dos conjuntos {AND, OR, NOT} ou {+, ·, ‘} {AND, NOT} ou {·, ‘} {NAND} ou {‘·} xNANDy = NOT(xANDy) ou x ’· y = (x·y)’ {NOR} ou {‘+} xNORy = NOT(xORy) ou x ‘+ y = (x+y)’
  • 11. Álgebra Booleana – conjuntos completos de operadores •Para escrever uma expressão booleana apenas com operadores NANDNAND deve-se •(1) colocá-la na forma normal disjuntiva-FND (somas de produtos) e •(2) eliminar as somas com as leis de DeMorgan • (3) converter os produtos em NAND usando involução •(4) eliminar as negações pela fórmula x’ = (x.1)’ = x '· 1 •EXEMPLO:EXEMPLO: x+(y·z’)=deMorg (x’ . (y.z’)’)’ =defNAND x’ '· (y.z’)’ = defNAND x’ '· (y '· z’) •= defNOT (x '· 1) '· (y '· (z '· 1)) •Para escrever uma expressão booleana apenas com operadores NORNOR deve-se •(1) colocá-la na forma normal conjuntiva-FNC (produtos de somas) e •(2) eliminar os produtos com as leis de DeMorgan • (3) converter as somas em NOR usando involução •(4) eliminar as negações pela fórmula x’ = (x+0)’ = x ‘+ 0 •EXEMPLO:EXEMPLO: x+(y.z’) =distrib (x+y).(x+z’) = deMorg [(x+y)’ + (x+z’)’]’ = •=defNOR (x '+ y) '+ (x '+ z’) =OBS-2 (x '+ y) '+ (x '+ (z '+ 0))
  • 12. Álgebra Booleana – Exemplo de conversão (1) Escreva a expressão booleana (x+(y·z’))’ com operadores NANDNAND •(1) FND:(1) FND: (x+(y·z’))’ =distrib ((x+y).(x+z’))’ =deMorgan (x+y)’ + (x+z’)’ • =deMorgan (x’.y’) + (x’.z) = •(2) deMorgan:(2) deMorgan: = (= ((x’.y’)’ . (x’.z)’)’ •(3) involução+def(3) involução+def = (((x’.y’)’ . (x’.z)’)’ = (x’.y’)’ '· (x’.z)’ = (x’ '· y’) '· (x’ '· z) •(4) elim. negações(4) elim. negações = ((x '·1) '· (y '·1)) '· ((x '·1) '· z) (2) Escreva a expressão booleana (x+(y·z’))’ com operadores NORNOR •(1) FNC:(1) FNC: (x+(y·z’))’ =deMorgan x’ . (y.z’)’ =deMorgan x’ . (y’+z) = •(2) deMorgan:(2) deMorgan: =deMorgan (x + (y’+z)’)’ •(3) involução+def:(3) involução+def: = x ‘+ (y’+z)’ = x ‘+ (y’ ‘+ z) •(3) elim. Negações:(3) elim. Negações: = x ‘+ ((y ‘+ 0) ‘+ z))
  • 13. Exercícios • Escrever a expressão booleana x.(y’+z) • apenas com operadores NANDNAND • apenas com operadores NORNOR • Calcule o valor da expressão para x=1, y=0 e z=0. Use primeiro a expressão original e depois a com NAND e com NOR. Exercício adicional: (x+y).(x.y)’
  • 14. Funções Booleanas Dado uma álgebra de Boole B = <B, +, ·, ‘, a, b> Uma função booleana é uma função f: B x...x B → B determinada por uma expressão da álgebra de Boole. Exemplo: f(x,y,z) = x.y + x.z’ + y.z'
  • 15. Funções Booleanas Formas de definição de uma função booleana: • algébrica •tabular (tabela verdade) • esquemática •Definição algébricaalgébrica: f (x,y,z)=x+( y'⋅z) •Definição tabulartabular : •Definição esquemáticaesquemática: x y z f(x,y,z) 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 y z x f(x,y,z)
  • 16. Funções Booleanas Conectores lógicos: •inversorinversor •NOTNOT •ANDAND •NANDNAND •OROR •NORNOR •XORXOR •XNORXNOR NOT(x) = x’ AND(x,y) = x.y OR(x,y) = x+y NAND(x,y) = (x.y)’ NOR(x,y) = (x+y)’ XOR(x,y) = (x+y).(x.y)’ XNOR(x,y) = ((x+y).(x.y)’)’
  • 17. Funções Booleanas Conversões: • algébrica => tabular (resolver cada trecho da expressão) •tabular => algébrica (FND: cada linha com valor 1 é uma expressão AND; combinar linhas com OR) • algébrica <=> esquemática (substituir componentes) • tabular <=> esquemática (converter para algébrica)
  • 18. Funções Booleanas Exemplo: 1. seja a função f(x,y) = (x+y’).(x’+y) • encontre suas definições tabular e esquemática 2. seja a função f(x,y) dada pela tabela ao lado: • encontre suas definições algébrica e esquemática x y f(x,y) 0 0 1 0 1 1 1 0 1 1 1 0
  • 19. Funções Booleanas Redução de uma expressão Booleana: f(x,y) = (x’.y’) + (x.y’)+ (x’.y) = =[3b] (x’+x).y’ + (x’.y) =[5a+4b] y’ + (x’.y) =[3a] (y’+x’)(y’+y) =[5a] (y’+x’).1 =[4b] y’+x’ =[deMorgan] (x.y)’ 1. f(x,y) = (x’.y’) + (x.y’)+ (x’.y) =? (x.y)’ Forma normal disjuntiva (soma de produtos)
  • 20. Funções Booleanas Exercícios: 1. seja a função f(x,y,z) = (x.y’).(y+z’) • encontre suas definições tabular e esquemática 2. seja a função f(x,y,z) dada pela tabela ao lado: • encontre suas definições algébrica (reduzida) e esquemática x y z f(x,y,z) 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1
  • 21. Álgebras - Homomorfismos e Isomorfismos • Entre conjuntos temos funções f:C → D • Entre estruturas matemáticas ou álgebras ou categorias temos morfismos h:<A, opA> → <B, opB>, com h: A → B e h: opA → opB funções • Dados duas Álgebras A=<A, *A> e B=<B, *B>, um morfismo h: A → B é um homomorfismo se conserva as operações, ou seja, para todo a,b ∈ A temos • h(a * b) = h(a) * h(b)
  • 22. Álgebras - Homomorfismos e Isomorfismos • Duas estruturas matemáticas A e B são ditas serem isomorfas se e somente se existir uma bijeção (isomorfismo) que leva elementos de uma em elementos da outra de modo que as propriedades (funções e relações) sejam preservadas. • Se duas estruturas são isomorfas então cada uma é a imagem semelhante da outra, a menos do rotulamento de seus elementos. • Ex.: considere os seguintes POSET’s: • P1 = ({1,2,3,6}, x divide y) • • P2 = (P({1,2}), x⊆y)
  • 23. Isomorfismo • • Seja h:: {1,2,3,6} → P({1,2}) definida por: • h(1) = ∅; h(2) = {1}; h(3) = {2}; h(6) = {1,2} h é um isomorfismo de P1 em P2 2 6 3 1 {1} {1,2} {2} ∅ h
  • 24. Isomorfismo de álgebras booleanas • Sejam A = <A, +, ·, ‘, a, b > e B = <B, &, *, “, c, d > duas álgebras booleanas. Um morfismo f: A → B é um isomorfismo de A em B, se para todo x e y ∈A: 1. f é uma bijeção entre A e B 2. f(x+y) = f(x) & f(y) 3. f(x.y) = f(x) * f(y) 4. f(x’) = f(x)”
  • 25. Isomorfismo Princípio da dualidade em Álgebras de Boole Para qualquer Álgebra de Boole • B = <B, +, ·, ‘, a, b> A estrutura BD = <B, ·,+, ‘, b, a> É uma Álgebra de Boole e, além disso, B ≅ BD são isomorfos
  • 26. Teorema de álgebras booleanas finitas Teorema: Seja B qualquer álgebra booleana com |B|=n elementos. Então, •n = 2m , para algum inteiro m, e •B é isomorfa a <P({1,2,..,m}), ∪, ∩, ‘, ∅, {1,2,..m}> . Corolário: o número de elementos do domínio de qualquer álgebra booleana é uma potência de 2.
  • 27. Isomorfismo x,y ∈B f u,v∈A operação (+, . , ‘) operação (&, *, “) z ∈B f-1 w ∈A Podemos implementar uma operação em outra estrutura: P.ex.: u&v = f-1 (f(u)+f(v))
  • 28. Exemplo Sejam C = <{a, b, c, d}, sup, inf>, onde as operações são dadas pelas tabelas ao lado, e B = <P({1,2}), ∪, ∩> duas álgebras. Seja o morfismo f:{a,b,c,d} → P({1,2}) dada por: f(a) = ∅ f(b) = {1} f(c) = {2} f(d) = {1,2} 2. Calcule inf(sup(a,b),b) = f-1 (f(a) ∪ f(b)∩f(b)) sup a b c d a a b c d b b b d d c c d c d d d d d d inf a b c d a a a a a b a b a b c a a c c d a b c d
  • 29. Álgebras Seja S um conjunto e * uma operação binária : * : S x S → S. 1. A operação * é associativa (A) se: x * (y * z) = (x * y) * z, para quaisquer x, y e z ∈ S. 1. S tem um elemento neutro (N) em relação à operação * se: existe i ∈ S tal que para todo x ∈ S, x * i = x = i * x . 1. Todo elemento tem um inverso (I) em relação à operação * se: para todo x ∈ S existe y∈ S tal que x * y = i = y * x . Notação: y= x-1 1. A operação * é comutativa (C) se: x * y = y * x, para todo x e y ∈ S. Exemplo: As estruturas < Z, + >, < Z, . >.
  • 30. Grupo → Uma estrutura G = < S, * > é um grupo se S é um conjunto não vazio e * é uma operação binária sobre S (operação de grupo) tal que: 1. * é associativa; 2. S tem um elemento neutro ; 3. todo elemento de S tem um elemento inverso → Se valer só a associatividade temos um semi-grupo. → Se valer a associativa e neutro temos um monóide → Obs. Um grupo em que * é comutativa é chamado de grupo comutativo ou abeliano. → Exemplos: A estrutura < Z, + > é um grupo comutativo. E <Z, .> ??
  • 31. Exemplo Seja R+ o conjunto dos reais positivos e seja . a operação de multiplicação de reais. Então : • < R+ , . > é um grupo comutativo. • O elemento neutro é o 1. • Para qualquer real positivo x, 1/x é o seu inverso com relação à operação de multiplicação. • < R+ , + > é um semi-grupo comutativo.
  • 32. Exercícios 1. < R, . > é um grupo ? É semi-grupo? 1. < Z, - > é um grupo ? É semi-grupo? 1. Seja M2(Z) o conjunto das matrizes 2x2 de elementos inteiros e seja + a operação de adição de matrizes. Mostre que < M2(Z), + > é um grupo comutativo. Mostre que < M2(Z), . > não é um grupo. Temos o grupo <Z, +> e o semi-grupo <Z, .>. O que será <Z, +, .> ??
  • 33. Anel → Uma álgebra G = < S, +, * > é um anel se valem as seguintes propriedades: 1. < S, + > é um grupo abeliano; 2. < S, * > é um semi-grupo; 3. Vale a distributividade a esquerda e a direita da operação * sobre +, ou seja, a*(b+c)= a*b + a*c e (a+b)*c = a*c + a*c Um anel é comutativo se * é comutativa. Exemplos: Z, Q, R, C com + e . são anéis. Uma álgebra de Boole é um anel comutativo idempotente (i.e. a.a = a) Dado um anel <S, +, .> O que falta para <S,*> ser um grupo ??
  • 34. Corpo → Uma álgebra G = < S, +, * > é um corpo se valem as seguintes propriedades: 1. < S, + , * > é um anel com o neutro 0 em +; 2. < S-{0}, * > é um grupo comutativo; Exemplos: Q, R, C com + e . são corpos. → Dado um corpo < S, +, * >, podemos definir operadores de diferença e divisão como → a - b = a + (-b) e a / b = a * b-1
  • 35. Corpo ordenado Uma estrutura < S, +, * , ≤> é um corpo ordenado, quando 1. < S, +, * > é um corpo 2. a ≤ b → a+c ≤ b+ c 3. 0 ≤ a e 0 ≤ b → 0 ≤ a.b Exemplos: < R, +, * , ≤> é um corpo ordenado < C, +, * , ≤> não é um corpo ordenado
  • 36. Operadores externos → Dado um grupo <S, +> uma operação externa * de um domínio K sobre S é uma função: 1. * : K x S → S, ou seja k*s1 = s2 ; Operações externas de um anel <K, +, . > podem ser combinadas com operações internas do grupo : → k * (s1 + s2) = k * s1 + k * s2 → (k + m) * s = k * s + m * s → (k . m) * s = (k * s) . (m * s) → 1 * s = s Que da origem a estrutura de Módulo. Ou seja, um módulo é uma estrutura: M= <K,S, *> em que Ké um anel comutativo <K,+,.> e S é um grupo comutativo <S,+> Se K é um corpo, temos um espaço vetorial.
  • 37. Operadores externos EXEMPLOS: 1. M = <R, R2 , *> com a soma de vetores e k*<x,y> = <k.x, k.y> é um espaço vetorial 2. M = <Z, R2 , *> com k*<x,y> = <k.x, k.y> é um módulo 3. Espaço vetorial das funções reais lineares: M= <R, F, *> em que F = {f:R →R, com f(x)=ax+b} com f(x)+g(x) e com k*f(x)
  • 38. Resumo & Exemplos Propriedades: <S,*> * é fechada se x * y está em S A – associativa x * (y * z) = (x * y) * z C – comutativa x * y = y * x N – neutro ou identidade x * i = i * x = x I – inverso x * x-1 = x-1 * x = i A → semi-grupo AN → monóide ANI → grupo ANIC → grupo comutativo Exemplos: • grupo • <R+ , . > comutativo • <M2(Z), +> comutativo • <R, + > comutativo • monóide •<R, . > comutativo • <N, +> comutativo • <P(S), ∪> comutativo • <P(S), ∩> comutativo • <M2(Z), . > não-comutativo • semi-grupo • <R-{0}, +> comutativo
  • 39. Resumo & Exemplos Propriedades: <S,*> * é fechada se x * y está em S A – associativa x * (y * z) = (x * y) * z N – neutro ou identidade x * i = i * x = x I – inverso x * x-1 = x-1 * x = i C – comutativa x * y = y * x A → semi-grupo AN → monóide ANI → grupo ANIC → grupo comutativo Exemplos: • grupo • <R[x], + > comutativo • monóide •<R[x], . > comutativo • < Σ*, ||> não-comutativo • • semi-grupo •
  • 40. Resumo & Exemplos Propriedades: <S,+,*> * é fechada se x * y está em S A – associativa x * (y * z) = (x * y) * z N – neutro ou identidade x * i = i * x = x I – inverso x * x-1 = x-1 * x = i C – comutativa x * y = y * x D-distributivo a *(b+c)= a * b + a * c (a+b)*c = a*c + b*c Dado <S,+,*> é um: Anel se <S, +> grupo comutativo (ANIC) <S, *> semi-grupo (A) vale D Corpo se é um anel e < S-{0}, * > é um grupo Corpo comutativo se é um corpo e * é comutativa Exemplos: • anel • <Z, + , . > comutativo • corpo • <R, +, . > comutativo • <M2(Z), +, . > não-comut. •<R[x], +, . > comutativo • • Em uma Álgebra de Boole <B, +, ·, ‘, 0, 1> <B, +> e <B, .> são monóides comutativos
  • 41. Exercício Sejam C = <{0, 1, a, b}, +, *, “, 0, 1>, onde as operações são dadas pelas tabelas ao lado, e B = <P({1,2}), ∪, ∩, ‘, ∅, {1,2}> duas álgebras booleanas. Seja o morfismo f:{0,1,a,b} → P({1,2}) dada por: f(0) = ∅ f(1) = {1,2} f(a) = {1} f(b) = {2} 2. Calcule (a+b)”*b = f-1 (f(a) ∪ f(b)’ ∩f(b)) + 0 1 a b 0 0 1 a b 1 1 1 1 1 a a 1 a 1 b b 1 1 b * 0 1 a b 0 0 0 0 0 1 0 1 a b a 0 a a 0 b 0 b 0 b “ 0 1 1 0 a b b a
  • 42. Exercícios Analise a estrutura algébrica de 1) < Σ*, ||> com: Σ* o conjunto de todas cadeias de caracteres (strings) || a operação de concatenação de strings 2) < Z7, +7, .7> com: Z7= {0,1,2,3,4,5,6} e + a soma módulo 7 e . o produto módulo 7. 3) Sendo Z=< Z7, +7,.7> da questão anterior e N = <N+ , +, .> o anel dos inteiros positivos, como será a estrutura M = < N+ , Z, *> em que *:N+ x Z → Z é o produto módulo 7 de N+ em Z. 4) < C, sup, inf> com: C um reticulado finito ordenado por uma relação ≤ e inf(x,y) é o ínfimo de x e y e sup(x,y) é o supremo de x e y.
  • 43. Exercícios Mais exercícios resolvidos em http://pt.scribd.com/doc/57701066/Matematica-Discreta-Exercicios-resolv http://web.ist.utl.pt/~ist10898/public/sd/Problems/Resolv_v01.pdf http://pt.scribd.com/doc/93333089/Estruturas-Algebricas-Exercicios- Resolvidos

×