Using matrix population models to inform biocontrol agent selection for garlic mustard ( Alliaria petiolata ) Dr. Adam S. ...
Collaborators <ul><li>Dr. Doug Landis, MSU </li></ul><ul><li>Dr. Doug Schemske, MSU </li></ul><ul><li>Mr. Jeff Evans, MSU ...
Garlic mustard (Alliaria petiolata)
first record, Long Island 1868 http://plants.usda.gov/java/profile?symbol=ALPE4   Current distribution
 
Experimental eradication of ALPET (Drayton and Primack,1999) <ul><li>Prevented seed rain for 3 yr in 60 experimental popul...
Biocontrol <ul><li>Basis: reunite pest and natural enemies </li></ul><ul><li>Variable results </li></ul><ul><li>How to max...
Drayton & Primack,1999 Rejmanek, 2000 census time = late spring, prior to seed dispersal
Drayton & Primack,1999 Rejmanek, 2000 n s n r n p n t  =
A  =
n t+1  =  A * n t n s n r n p n t  = A  =
Elasticity analysis n t+1  =  A * n t (Caswell, 2001) what are consequences of proportional changes in population growth r...
Literature values for  A. petiolata
Davis et al. 2006 Ecol. Apps. 16: 2399-2410.  s r s rf f g 1 g 2 s s
Ceutorhynchus scrobicollis : Feeding niche : root, root crown, shoot base Damage types : direct mortality, reduced fecundi...
Photos: Hariet Hinz & Esther Gerber C. scrobicollis  damage
Ceutorhynchus alliariae : Feeding niche : stem and petioles Damage types : reduced fecundity, reduced plant size Feeding p...
Ceutorhynchus constrictus : Feeding niche : seed Damage types : reduced fecundity Feeding period : April-May Blossey et al...
Zero growth isoclines <ul><li>What combinations of feeding damage by agents to rosettes and seeds lead to stable or declin...
Zero growth isoclines Davis et al. 2006
Davis et al., 2006
Current field work
Evans, 2006
 
 
Photo: J. Evans Photo: Raghu
 
 
Fecundity (seeds plant -1 ) Elasticity of    to x
Reduction in seed output (%) Rosette mortality(%) M2 I2, I3 M5, M6 M3 M7 I3 M1 M8 M4 I1 I5
Conclusions <ul><li>Rosette mortality and reductions in seed output will be most important parameters across sites </li></...
Next steps <ul><li>add density dependence to model </li></ul><ul><li>use CABI data on  Ceutorhynchus  weevil biology to de...
Development of spatially-referenced functions for describing density dependence of  Alliaria petiolata  demography logisti...
Density dependent rosette survival to reproductive maturity Odds ratio of rosette survival * *with respect to seedlings pe...
Y = 1.06*e -0.0087*X R 2  = 0.68, P<0.05,   0  NS P(Survive 1yr) Population density t 0  (plants m -2 ) Density dependent...
Y = 1440*e -0.014*X R 2  = 0.84, P<0.05,   0  NS Fecundity (seeds plant -1 ) Population density t 0  (plants m -2 ) Densi...
Y = 0.218*e -0.0003*X R 2  = 0.08, P<0.05,   0  NS P(Survive to rosette) Population density t 0  (plants m -2 ) Density d...
Y = 0134.*e -0.00014*X R 2  = 0.99, P<0.05,   0  NS P(Survive to rosette) Population density t 0  (plants m -2 ) Density ...
Y = 0.30*e -0.0003*X R 2  = 0.99, P<0.05,   0  NS P(Survive to rosette) Population density t 0  (plants m -2 ) Density de...
Y = 1954*e -0.0024*X R 2  = 0.40, P<0.05,   0  NS PAR Mar 7 (umol m -2 ) Population density t 0  (plants m -2 ) Light-med...
 
<ul><li>Anderson, R. C., S. S. Dhillion and T. M. Kelley. 1996. Aspects of the ecology of an invasive plant, garlic mustar...
Upcoming SlideShare
Loading in …5
×

Garlic Mustard Demography

1,181
-1

Published on

USDA Weed Science from UIUC

Published in: Economy & Finance, Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,181
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
2
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide
  • Garlic Mustard Demography

    1. 1. Using matrix population models to inform biocontrol agent selection for garlic mustard ( Alliaria petiolata ) Dr. Adam S. Davis USDA-ARS Invasive Weed Management Unit University of Illinois Department of Crop Sciences Urbana, IL
    2. 2. Collaborators <ul><li>Dr. Doug Landis, MSU </li></ul><ul><li>Dr. Doug Schemske, MSU </li></ul><ul><li>Mr. Jeff Evans, MSU </li></ul><ul><li>Dr. Raghu Sathyamurthy, INHS </li></ul><ul><li>Dr. Bernd Blossey, Cornell Univ. </li></ul><ul><li>Dr. Victoria Nuzzo, Natural Area Consultants </li></ul><ul><li>Dr. Hariet Hinz, CABI Biosciences </li></ul><ul><li>Dr. Esther Gerber, CABI Biosciences </li></ul>
    3. 3. Garlic mustard (Alliaria petiolata)
    4. 4. first record, Long Island 1868 http://plants.usda.gov/java/profile?symbol=ALPE4 Current distribution
    5. 6. Experimental eradication of ALPET (Drayton and Primack,1999) <ul><li>Prevented seed rain for 3 yr in 60 experimental populations of ALPET </li></ul><ul><li>>25% of populations were still growing in 4 th year </li></ul><ul><li>6-10 years of no seed return necessary to eradicate </li></ul>
    6. 7. Biocontrol <ul><li>Basis: reunite pest and natural enemies </li></ul><ul><li>Variable results </li></ul><ul><li>How to maximize chance of controlling target organism while minimizing chance of effects on nontarget organisms (Delfosse, 2005) </li></ul><ul><li>Modeling approach: McEvoy & Coombs, 1999; Shea et al. 2005 </li></ul><ul><ul><li>plant demography: “Achilles heel” </li></ul></ul><ul><ul><li>identify appropriate agents </li></ul></ul><ul><ul><li>variability in vital rates => site specific mgt. </li></ul></ul>Photos: Hariet Hinz and Esther Gerber
    7. 8. Drayton & Primack,1999 Rejmanek, 2000 census time = late spring, prior to seed dispersal
    8. 9. Drayton & Primack,1999 Rejmanek, 2000 n s n r n p n t =
    9. 10. A =
    10. 11. n t+1 = A * n t n s n r n p n t = A =
    11. 12. Elasticity analysis n t+1 = A * n t (Caswell, 2001) what are consequences of proportional changes in population growth rate? elasticity of  to lower level parameters
    12. 13. Literature values for A. petiolata
    13. 14. Davis et al. 2006 Ecol. Apps. 16: 2399-2410. s r s rf f g 1 g 2 s s
    14. 15. Ceutorhynchus scrobicollis : Feeding niche : root, root crown, shoot base Damage types : direct mortality, reduced fecundity Feeding period : Sept.-May Blossey et al., 2001 Photo: Hariet Hinz and Esther Gerber
    15. 16. Photos: Hariet Hinz & Esther Gerber C. scrobicollis damage
    16. 17. Ceutorhynchus alliariae : Feeding niche : stem and petioles Damage types : reduced fecundity, reduced plant size Feeding period : April-May Blossey et al., 2001 - Photos: Hariet Hinz & Esther Gerber
    17. 18. Ceutorhynchus constrictus : Feeding niche : seed Damage types : reduced fecundity Feeding period : April-May Blossey et al., 2001 Photo: Hariet Hinz & Esther Gerber
    18. 19. Zero growth isoclines <ul><li>What combinations of feeding damage by agents to rosettes and seeds lead to stable or declining populations? </li></ul><ul><li>Solve characteristic equation: det(A-  )=0 in terms of c1 and c2 (agent impacts) </li></ul><ul><li>Evaluate at  = 1 </li></ul>Davis et al. 2006
    19. 20. Zero growth isoclines Davis et al. 2006
    20. 21. Davis et al., 2006
    21. 22. Current field work
    22. 23. Evans, 2006
    23. 26. Photo: J. Evans Photo: Raghu
    24. 29. Fecundity (seeds plant -1 ) Elasticity of  to x
    25. 30. Reduction in seed output (%) Rosette mortality(%) M2 I2, I3 M5, M6 M3 M7 I3 M1 M8 M4 I1 I5
    26. 31. Conclusions <ul><li>Rosette mortality and reductions in seed output will be most important parameters across sites </li></ul><ul><li>C. scrobicollis is the agent to watch </li></ul><ul><li>Single agent releases are unlikely to succeed in high  populations </li></ul><ul><li>Introductions of C. alliariae or C. constrictus should be preceded by C. scrobicollis </li></ul>
    27. 32. Next steps <ul><li>add density dependence to model </li></ul><ul><li>use CABI data on Ceutorhynchus weevil biology to develop coupled plant-herbivore models </li></ul><ul><li>design post-release experiments </li></ul>
    28. 33. Development of spatially-referenced functions for describing density dependence of Alliaria petiolata demography logistic regression of s rf on binned data reference plant t 0 t 1
    29. 34. Density dependent rosette survival to reproductive maturity Odds ratio of rosette survival * *with respect to seedlings per distance bin
    30. 35. Y = 1.06*e -0.0087*X R 2 = 0.68, P<0.05,  0 NS P(Survive 1yr) Population density t 0 (plants m -2 ) Density dependent rosette survival to reproductive maturity
    31. 36. Y = 1440*e -0.014*X R 2 = 0.84, P<0.05,  0 NS Fecundity (seeds plant -1 ) Population density t 0 (plants m -2 ) Density dependent fecundity ***** The damage to reproductive output due to density is set up in the previous growing season. Over- crowded rosettes do not recover as ranks thin!
    32. 37. Y = 0.218*e -0.0003*X R 2 = 0.08, P<0.05,  0 NS P(Survive to rosette) Population density t 0 (plants m -2 ) Density dependent seedling survival to rosette stage
    33. 38. Y = 0134.*e -0.00014*X R 2 = 0.99, P<0.05,  0 NS P(Survive to rosette) Population density t 0 (plants m -2 ) Density dependent seedling survival to rosette stage, IP
    34. 39. Y = 0.30*e -0.0003*X R 2 = 0.99, P<0.05,  0 NS P(Survive to rosette) Population density t 0 (plants m -2 ) Density dependent seedling survival to rosette stage, H
    35. 40. Y = 1954*e -0.0024*X R 2 = 0.40, P<0.05,  0 NS PAR Mar 7 (umol m -2 ) Population density t 0 (plants m -2 ) Light-mediated seedling recruitment
    36. 42. <ul><li>Anderson, R. C., S. S. Dhillion and T. M. Kelley. 1996. Aspects of the ecology of an invasive plant, garlic mustard ( Alliaria petiolata ), in central Illinois. Restor Ecol 4: 181-191. </li></ul><ul><li>Blossey, B., V. Nuzzo, H. Hinz and E. Gerber. 2001. Developing biological control of Alliaria petiolata (M. Bieb.) Cavara and Grande (garlic mustard). Nat Area J 21: 357-367. </li></ul><ul><li>Caswell, H. 2001. Matrix population models: construction, analysis and interpretation. Sunderland, MA: Sinauer. Pp. 722 </li></ul><ul><li>Cavers, P. B., M. I. Heagy and R. F. Kokron. 1979. The biology of Canadian weeds. 35. Alliaria petiolata (M. Bieb.) Cavara and Grande. Can. J. Plant Sci. 59: 217-229. </li></ul><ul><li>Davis, A. S. , D. A. Landis, V. Nuzzo, B. Blossey, E. Gerber and H. L. Hinz. 2006. Demographic models inform selection of biocontrol agents for garlic mustard ( Alliaria petiolata ). Ecol. Appl. 16: 2399-2410. </li></ul><ul><li>Delfosse, E. S. 2005. Risk and ethics in biological control. Biol Control 35: 319-329. </li></ul><ul><li>Drayton, B. and R. B. Primack. 1999. Experimental extinction of garlic mustard ( Alliaria petiolata ) populations: implications for weed science and conservation biology. Biol. Invas. 1: 159-167. </li></ul><ul><li>McEvoy, P. B. and E. M. Coombs. 1999. Biological control of plant invaders: regional patterns, field experiments and structured population models. Ecol. Appl. 9: 387-401. </li></ul><ul><li>Meekins, J. F. and B. C. McCarthy. 2002. Effect of population density on the demography of an invasive plant ( Alliaria petiolata , Brassicaceae) population in a southeastern Ohio forest. Am. Mid. Nat. 147: 256-278. </li></ul><ul><li>Rejmanek, M. 2000. On the use and misuse of transition matrices in plant population biology. Biol. Invas. 2: 315-317. </li></ul><ul><li>Shea, K., D. Kelly, A. W. Sheppard and T. L. Woodburn. 2005. Context-dependent biological control of an invasive thistle. Ecology 86: 3174-3181. </li></ul>

    ×