Final Presentation - Senior Design Project
Upcoming SlideShare
Loading in...5
×
 

Final Presentation - Senior Design Project

on

  • 424 views

Final presentation/design review of senior design project for Mechanical Engineering undergraduate degree at Arizona State University.

Final presentation/design review of senior design project for Mechanical Engineering undergraduate degree at Arizona State University.

Statistics

Views

Total Views
424
Views on SlideShare
424
Embed Views
0

Actions

Likes
0
Downloads
28
Comments
0

0 Embeds 0

No embeds

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Final Presentation - Senior Design Project Final Presentation - Senior Design Project Presentation Transcript

  • Performance  Brake  Kit:     MAE  489  Final  Presenta:on   Ian  Kubik   Tyler  Lemonds   Aus:n  Malm   Lucas  Thompson   2013  July  11  
  • Contents:     •  Project  Overview:   o  Problem  Statement   o  Summary  of  Components   •  This  semester’s  work:   o  o  o  o  Manufacturing   Design  changes   Re-­‐analyze  ANSYS  results     Prototype  Tes:ng   •  Project  Deliverables:   o  Budgets   o  Valida:on  of  Goal  Parameters   •  Conclusions:   o  o  o  o  Changes  to  “produc:on”  design   Areas  of  success   Areas  for  improvement   Acknowledgements   •  Ques:ons  
  • Problem  Statement   The   OEM   braking   equipment   on   the   Honda   S2000   is   more   than   adequate   for   regular   street   use;   however,   when   subjected   to   the   demands  of  performance  driving  the  system’s  braking  capacity  does   not  suffice.   The   “weekend”   car   enthusiast   that   aspires   to   increase   braking   performance   is   forced   to   upgrade   his   wheels,   brackets,   and   oben   rotor   as   well   in   order   to   sufficiently   increase   the   vehicle’s   braking   performance.   •  Our  goals  for  func:onal  valida:on:   –  –  –  –  –  Decrease  system  weight.   Maintain  proper  balance  between  front/rear  brakes.   Increase  performance,  specifically  stopping  distance  and  heat  dissipa:on.   Low  cost  compared  to  other  op:ons  on  the  market.       Fit  original  equipment  manufacturer  components  
  • Problem  Solu:on   •  Achieved  weight/performance  goals  through   materials,  increased  brake  torque,  FEA   analysis.     •  Modular  configura:on  for  best  performance   while  mee:ng  cost  requirements   –  Fixed:  performance   –  Floa:ng:  cost/  OEM  fitment   •  Novel  method  of  “upgrading”  that  saves   money  and  material.      
  • Key  design  aspects   •  Modularity   •  Mul:-­‐func:on  bracket   •  Stock  hardware  
  • Summary  of  Components   •  Calipers:  Fully  designed,  tested,   and  built   •  Three  “half”  pieces  with  leb  and   right  sides.  
  • Summary  of  Components   •  Brackets:  Designed,  tested,  and  built.  
  • Summary  of  Components   •  Pistons  and  rotor  hats:  Designed,  tested,  built.   (but  somewhat  simpler  components)   •     8  pistons  of  4  different  sizes;  2  rotor  hats  
  • Summary  of  Components   •  Bolts  and  studs:  tested  to  ensure  strength,  and   purchased.  
  • Summary  of  Components   •  Dowel  pins,  screws,  nuts,  seals,  valves,  brake   pads:  purchased.  (Brake  pad  p.f.c  data  used  in   other  tests)    
  • Summary  of  Components   •  Rotor:  somewhat  tested,  bought.   •  Unable  to  build  due  to  manufacturing  process   (cas:ng).    
  • Summary  of  Components   •  Small  parts  we  built  but  didn’t  really  “design”/ test:  the  covers  for  the  brake  pad  reten:on   screws  &  spacers  for  the  bracket    
  • nd  Semester  Plan   2 •  Knew  our  project  would  be  MFG-­‐heavy,  so  we   planned  to  start  immediately.   •  Design  changes  made  throughout  the  MFG   process,  for  reasons  of  MFG-­‐ability,  size   constraints,  general  performance.     •  Prototype  tes:ng  towards  the  end  of  the   semester  (but  as  soon  as  we  could):  needed  to   test  stock,  fixed,  and  floa:ng  configura:ons.   •  Perform  new  solid  model  tests,  to  verify  safety  of   all  design  changes.       •  Renewed  focus  on  keeping  up-­‐to-­‐date  on   paperwork.      
  • Manufacturing   •  Required  custom  tooling  to  be  designed  and   ground.   •  Custom  fixturing  for  each  opera:on  
  • Manufacturing   •  CNC  mill  programmed  and  operated  by  Ian:   –  Brackets,  calipers,  &  rotor  hats  
  • Manufacturing   •  Other  simple  opera:ons  performed  on  lathe   (manual  and  CNC)  and  manual  mill:   –  chamfers  on  rotor  hats  and  brackets   –  pins,  spacers  
  • Manufacturing:  Some  Issues,  None   Major   •  Material  re-­‐welded  aber  a  tool  was   programmed  incorrectly   • Everything  took   longer  than  expected   (as  usual).      
  • Manufacturing:  Some  Issues,  None   Major   •  One  pin  hole  messed  up,  but  was  repaired   •  Design  changes  made  to  simplify  the   manufacturing  process.     •  Thru  body  fluid  ports  
  • Design  Changes   •  Many  updates  since  last  semester,  mostly   small.  
  • Design  Changes   •  Materials   –  Bracket  slider  (changed  to  Al-­‐6061)   –  Pistons  (different  grade  stainless  steel)   –  Bushings  (bronze  features  added)  
  • Design  Changes   •  Many  updates  to  the  fluid  lines  &  valves:  
  • Design  Changes   •  Other  small  updates  to   calipers,  brackets,   pistons.      
  • Design  Changes   •  Biggest  change  was  due  to  a   measuring  error  that  required   the  rotor  hat  to  be  rebuilt  
  • Structural  FEA  Re-­‐test   •  Wanted  to  re-­‐test  our  FEA  results  from  the   previous  semester,  aber  incorpora:ng  all   design  changes.     •  Would  refine  tests  based  on  what  we  learned   last  semester.   •  Planned  but  not  completed  due  to  :me.    
  • Rotor  Design   •  Last  semester,  began  rotor  design  with  ANSYS  CFX.       •  Planned  to  refine  and  connect  numerical  results  to  field  tests   via  recorded  temperatures,  and  to  lab  tests  (mass  flow).   •  Create  improved  model  through  parametric  design  with   numerical  and  field  tests  as  valida:on.         •  Uncompleted  due  to  focus  on  manufacturing.  
  • Prototype  Tes:ng:  Approach   •  Standardize  as  much  as  possible   •  Determine  60-­‐0  braking  distance  while   monitoring  cri:cal  parameters   –  Temperature   •  Rotor,  caliper,     :re,  road  surface   –  Tire  pressure   •  Same  stretch  of  road   •  Maintain  fuel  level  
  • Prototype  Tes:ng:  Results   •  32  total  runs  among  the  3  setups.       •  ANOVA  test  for  3-­‐way  inter-­‐comparison.   • P=0.0081 means a sta:s:cally significant result.
  • Prototype  Tes:ng:  Difficul:es   •  ABS  ac:va:ng     –  Stock  rear  system  and  pads   –  Less  than  ideal  :res  and  sizing   •  Rotor/Pads  fully  bedded  for  ini:al  tests   •  No  way  to  perfectly  standardize  procedure   (stopping  loca:on  and  speed  both  done  by   eye)   •  Nature  of  project  is  difficult  to  get  many  data   points   •  Standardize  bleeding  procedure  
  • Prototype  Tes:ng:  Summary   •  Some  results  (floa:ng)  show  our  system  is   significantly  beoer.   •  Biggest  difficulty  with  ABS  ac:va:ng   •  Original  goal  was  to  “maintain  balance”   •  Performance  pads  necessary  for  rear  brakes   •  Would  always  be  beoer  if  we  could’ve  done   more.    
  • Design  Valida:on:   •  Performance   –  Clear  success  for  floa:ng,  fixed  needs  more   tes:ng   •  Weight   –  Lighter  than  stock:  check   •  Cost   –  Modularity  means  significant  savings   –  Cost  details  on  next  page   •  Balance   –  Somewhat  of  a  failure  here   •  Fit  OEM  components   –  Drove  the  design  at  many  points.    A  success   overall.    
  • Design  Valida:on:  Cost   •  How  much  would  the  kit  cost  if  we  sold  it?   –  $75.00  pads   –  ~$200.00  for  caliper  raw  materials   –  ~$100.00  for  bracket/rotor  hat  materials   –  ~$45.00  for  pistons   –  ~25hrs  machine  :me  (prototyping—produc:on   would  be  much  less)   •  Cost  always  depends  on  produc:on  volume.   •  ASU  machine  shop  tooling  not  perfect.    
  • Budget  Results:   •  Dollars:  $819.46  spent  from  $800  budget     –  Materials:  ~$420   –  Parts:  ~$256   •  Labor  budget:   –  Who  knows…  
  • “Produc:on”  Design  Changes:   •  Larger  rotor     –  Backing  plate  clearance   –  Increased  stud   engagement   –  Improved  thermal   –  Aesthe:cs   •  Use  a  common  bolt  size   •  Longer  studs   •  Clearance  for  installa:on   –  socket  
  • “Produc:on”  Design  Changes:   •  Con:nued  minor   changes  to   mul:ple  features  
  • “Produc:on”  Design  Changes   •  Add  a  feature  to  make   floa:ng  assembly  easier   to  bleed  (remove  air  from   the  system).    
  • Conclusion:  Areas  of  Success   •  Overall  everything  turned  out   preoy  well  in  terms  of:   –  Budget   –  Brakes  func:on  correctly   –  Original  design  goals  rela:vely   well  validated   –  Made  updates  for  future     designs.      
  • Conclusion:  Areas  for  Improvement   •  Insufficient  :me/  funds  to  test  system  with   fully  worn  brake  pads   •  Further  tests  against  other  brake  kits  (both   computa:onal  and  field  tes:ng)   •  Had  to  build  more  parts  than  we  planned  in   the  beginning   •  Always  luck  involved  in  a  class  like  this,  and   ours  was  mostly  good  
  • Conclusions:  Acknowledgements   •  Thank  you  to  Baer  Inc  for  the  design  feedback   and  access  to  parts.   •  Thank  you  to  Dr.  Middleton  &  Dr.  Squires  for   many  helpful  discussions.   •  And  thanks  to  everyone  who’s  helped  us   through  these  past  few  years  
  • Ques:ons?   •  Feel  free  to  come  up  and  touch  stuff?