Your SlideShare is downloading. ×
0
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Thermal Group
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Thermal Group

4,420

Published on

Published in: Business
3 Comments
2 Likes
Statistics
Notes
No Downloads
Views
Total Views
4,420
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
445
Comments
3
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Thermal Turbomachines<br />History, Types and Uses<br />
  • 2. Contents<br />Fans and Blowers<br />Compressors<br />Steam Turbines<br />Gas Turbines<br />2<br />
  • 3. Fans and Blowers<br />Team Members:<br />Ghada Zobeir<br />Nouran Ezz El Din<br />Nervien Islam<br />3<br />Fans and Blowers<br />
  • 4. Contents<br />Definition<br />History<br />Components<br />Fans<br />Performance Parameters<br />Blowers<br />4<br />Fans and Blowers<br />
  • 5. Definition<br />Fan: An mechanically powered device used to produce an airflow (compression ratio ~1.1)<br />Blower: A high pressure fan (compression ratio 1.11.2)<br />5<br />Fans and Blowers<br />
  • 6. History<br />Omar-RajeenJumala 1st working mechanical fan (1832)<br />1st mechanical fan  Punkah Fan (Middle East 19th century)<br />Nicola Tesla (AC) and Thomas Edison (DC)  Electric Power  Electric Fans and blowers<br />6<br />Fans and Blowers<br />
  • 7. Components<br />Impeller or Rotor: A series of radial blades attached to a hub which creates the pressure difference.<br />Motor: provides mechanical power to rotate the blades.<br />Housing: Enclosure that protects the components.<br />7<br />Fans and Blowers<br />
  • 8. Fans<br />Centrifugal Fans<br />Axial Fans<br />8<br />Fans and Blowers<br />
  • 9. Centrifugal Fans<br />They throw air away from the blade tips.<br />3 types<br />Radial Blade<br />Forward Curved Blade<br />Backward Curved Blade<br />9<br />Fans and Blowers<br />
  • 10. Axial Fans<br />They force the air to move parallel to the rotating shaft.<br />3 types<br />Propeller Fans<br />Tube Axial Fans<br />Vane Axial Fans<br />10<br />Fans and Blowers<br />
  • 11. Comparison<br />11<br />Fans and Blowers<br />
  • 12. Performance Parameters<br />12<br />Fans and Blowers<br />
  • 13. Blowers<br />Centrifugal<br />Centrifugal blowers look more like centrifugal pumps than fans. The impeller is typically gear-driven and rotates as fast as 15,000 rpm.<br />Positive Displacement<br />Positive displacement blowers have rotors, which &amp;quot;trap&amp;quot; air and push it through housing<br />13<br />Fans and Blowers<br />
  • 14. Compressors<br />Team Members<br />Karim Ehab<br />Mohamed El Laithy<br />EmanSaudi<br />Mahmoud Ali Fouad<br />14<br />Compressors<br />
  • 15. Contents<br />Definition<br />Types<br />15<br />Compressors<br />
  • 16. Definition<br />Compressors: Mechanically powered gas mover with pressure ratio &amp;gt;1.2<br />16<br />Compressors<br />
  • 17. Types<br />17<br />Compressors<br />
  • 18. Centrifugal Compressors (Dynamic)<br />Design<br />Impeller (rotating vanes)  similar to centrifugal fan (mostly backward curved blade fan)<br />Housing  mounted static vanes (diffusers)<br />18<br />Compressors<br />
  • 19. Centrifugal Compressors (Dynamic)<br />Advantages<br />High mass flow rate<br />Oil free gas flow (Good Sealing)<br />Low Life Cycle Cost (LCC) (High Reliability)<br />High Efficiency<br />Max compression ratio of 10:1<br />19<br />Compressors<br />
  • 20. Centrifugal Compressors (Dynamic)<br />Disadvantages<br />Fixed head for all gases, and variable pressure ratio for each gas. (Not used with Molecular weight less than 10 due to very low pressure ratio).<br />Needs multi-stage configuration for higher pressure ratio.<br />20<br />Compressors<br />
  • 21. Axial Compressors (Dynamic)<br />Design<br />Rotor with successive rows of blades<br /> Stator blades  diffusers, remove swirl, maintain axial flow<br />Blade aerodynamic design  max thrust, min drag<br />21<br />Compressors<br />
  • 22. Axial Compressors (Dynamic)<br />Advantages<br />Higher efficiency than centrifugal compressors (+ 8~10%)<br />Small frontal area<br />High pressure rise<br />Compression ratio of 1.15-1.6 per stage<br />Disadvantages<br />High cost<br />High weight<br />High starting requirements<br />22<br />Compressors<br />
  • 23. Positive Displacement Compressors<br />Sliding vane compressor<br />23<br />Compressors<br />
  • 24. Positive Displacement Compressors<br />Lobe compressor<br />24<br />Compressors<br />
  • 25. Positive Displacement Compressors<br />Screw compressor<br />25<br />Compressors<br />
  • 26. Positive Displacement Compressors<br />Reciprocating compressor<br />26<br />Compressors<br />
  • 27. Steam Turbines<br />Team Members<br />Amr Ibrahim<br />Rasha Kamal<br />Dina El Naggar<br />YahiaSowylam<br />27<br />Steam Turbines<br />
  • 28. Contents<br />Definition<br />History<br />Design<br />Types<br />Uses<br />28<br />Steam Turbines<br />
  • 29. Definition<br />A steam turbine is a mechanical device that extracts thermal energy from pressurized steam, and converts it into rotary motion<br />29<br />Steam Turbines<br />
  • 30. History<br />Hero of Alexandria’s Aeolipile (reaction turbine)<br />30<br />Steam Turbines<br />
  • 31. History<br />Sir Charles Parsons  modern steam turbine  1884  7.5 kW of electricity.<br />7.5 kW  50,000 kW<br />31<br />Steam Turbines<br />
  • 32. Design<br />One set of stationary blades is connected to the casing<br />One set of rotating blades is connected to the shaft<br />32<br />Steam Turbines<br />
  • 33. Types<br />Steam Turbines are classified according to:<br />Steam Supply and Exhaust Conditions<br />Casing or Shaft Arrangements<br />N.B. Other types are stated in the gas turbine section.<br />33<br />Steam Turbines<br />
  • 34. Steam Supply and Exhaust Conditions<br />Condensing: most electrical power plants<br />Non-condensing (backpressure turbines): use exhaust steam in other processes (heating units, pulp and paper plants, desalination facilities)<br />34<br />Steam Turbines<br />
  • 35. Steam Supply and Exhaust Conditions<br />Reheat turbine: reheat high pressure exhaust to operate a low pressure turbine.<br />35<br />Steam Turbines<br />
  • 36. Casing or Shaft Arrangements<br />Single casing units: single casing and shaft are coupled to a generator<br />Tandem compound: two or more casings are directly coupled together to drive a single generator<br />Cross compound arrangement: two or more shafts not in line driving two or more generators that often operate at different speeds. Typically used for many large applications<br />36<br />Steam Turbines<br />
  • 37. Uses<br />Steam turbines are used for the generation of electricity in thermal power plants, such as plants using coal or fuel oil or nuclear power<br />37<br />Steam Turbines<br />
  • 38. Uses<br />Steam turbines may be used in combined cycles with a steam generator <br />38<br />Steam Turbines<br />
  • 39. Uses<br />Steam turbines are used as drivers for large ships<br />39<br />Steam Turbines<br />
  • 40. Gas Turbine<br />Team Members:<br />Mahmoud Koraïem<br />Mohamed El Mohasseb<br />AmrSerry<br />40<br />Gas Turbine<br />
  • 41. Contents<br />Definition<br />History<br />Types and design<br />Applications<br />41<br />Gas Turbine<br />
  • 42. Definition<br />Compressor, combustion chamber and turbine arrangement.<br />Working fluid is air (compressor), air + combustion products (turbine)<br />42<br />Gas Turbine<br />
  • 43. History<br />1500  Leonardo Da Vinci  chimney jack<br />43<br />Gas Turbine<br />
  • 44. History<br />1791  John Barber designed (UK) 1st gas turbine engine  uses a compressor, combustion chamber, and a turbine (patent only)<br />44<br />Gas Turbine<br />
  • 45. History<br />1872 - 1904  F. Stolze designed (Germany)  gas turbine with axial compressor (no useful power)<br />1906  ArmengaudLemale (France) centrifugal compressor (no useful power)<br />The lack of advanced knowledge of aerodynamic was the reason for the failure.<br />45<br />Gas Turbine<br />
  • 46. History<br />1910 HanzHolzwarth (Germany)  constant volume combustion (150 kW)<br />46<br />Gas Turbine<br />
  • 47. Types and Design<br />Axial gas turbine<br />Radial gas turbine<br />Bladeless gas turbine<br />(the difference is in the turbine stage only)<br />47<br />Gas Turbine<br />
  • 48. Axial Gas Turbines<br />Most common type<br />Easy multi-staging high overall pressure ratio<br />Wide range of applications<br />48<br />Gas Turbine<br />
  • 49. Axial Gas Turbines<br />Can be either impulse (Rateau, Curtis) turbine or reaction (Parson’s) type<br />Rateau  stationary blades = nozzles<br />Curtis  1 nozzle (rest is anti-swirl)<br />49<br />Gas Turbine<br />
  • 50. Axial Gas Turbines<br />Rateau  stationary blades = nozzles<br />50<br />Gas Turbine<br />
  • 51. Axial Gas Turbines<br />Curtis  1 nozzle (rest is anti-swirl)<br />51<br />Gas Turbine<br />
  • 52. Axial Gas Turbines<br />Parson’s  reaction turbine<br />52<br />Gas Turbine<br />
  • 53. Axial Gas Turbines<br />Blades  air cooled<br />Superalloys  transition elements (Ni, Fe, Co) alloys are used with (Al, Ti or Nb) in FCC crystals<br />53<br />Gas Turbine<br />
  • 54. Radial Gas Turbines<br />High pressure ratio per stage<br />Hard to multi-stage<br />Very Compact size<br />More efficient for small mass flow rate<br />Lower Thermal stresses (no need for air cooling)<br />54<br />Gas Turbine<br />
  • 55. Bladeless Turbine (Tesla’s)<br />Uses adhesive force of inlet gas to turn the disks<br />Ideal for extremely small flow applications<br />Efficiency (60~95%)<br /> (steam turbine’s 80~98%)<br />55<br />Gas Turbine<br />
  • 56. Applications<br />Turboshaft engine (used in locomotive)<br />56<br />Gas Turbine<br />
  • 57. Applications<br />Turboprop engine<br />57<br />Gas Turbine<br />
  • 58. Applications<br />Turbofan engine<br />58<br />Gas Turbine<br />
  • 59. Applications<br />Turbojet engine<br />59<br />Gas Turbine<br />
  • 60. Applications<br />Combined power cycle (Gas turbine, steam turbine)<br />N.B. Advances in gas turbines are mainly dependant on cooling technology (axial), and compressor design (Wc = 60% Wt)<br />60<br />Gas Turbine<br />
  • 61. Any Questions?<br />61<br />Fans and Blowers<br />

×