デザインキット・擬似共振回路の解説書

1,387 views
1,329 views

Published on

デザインキット・擬似共振回路の解説書です。

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,387
On SlideShare
0
From Embeds
0
Number of Embeds
349
Actions
Shares
0
Downloads
7
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

デザインキット・擬似共振回路の解説書

  1. 1. Design KitQuasi-Resonant Switching Power Supply usingFA5541 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 1
  2. 2. Contents Slide #1. Quasi-Resonant Switching Power Supply 19V/5A............................................................ 3 1.1 Output voltage............................................................................................................. 4 1.2 Output current.............................................................................................................. 5 1.3 Output ripple voltage .................................................................................................. 6 1.4 Step-load response..................................................................................................... 72. Basic operation of switching power supply using FA5541................................................. 8-113. Start-up sequence simulation. .......................................................................................... 12-154. Bridge diode peak current at start-up…............................................................................. 16-175. Transformer....................................................................................................................... 18-206. Transformer leakage inductance....................................................................................... 21-227. RCD Clamping network..................................................................................................... 23-248. Power MOSFET switching device..................................................................................... 25-279. Schottky barrier diode D21 and D22 waveforms............................................................... 28-3010.Photocoupler..................................................................................................................... 31-32Simulations index…………………………………………………………………………………... 33 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 2
  3. 3. 1.Quasi-Resonant Switching Power Supply 19V/5A K K1 K_Linear COUPLING = 0.98 C14 L1 = Ls L2 = Lp L3 = Lsub 4700pF C_T1 D21 2200pF 1 Y G865C15R Rp_T1 3 2 L1 RSL1 19V / 0 to 5A 0.150 4.7uH 150m 1 2 VO_19V R2 C2 2 1 C4 C5 C6 C7 56k 2200pF 3300uF 3300uF 3300uF 1000uF C1 D22 220uF Lp Ls Y G865C15R RL V1 DBR1 IC = 139 {Lp} {Nsp*Nsp*Lp} ESR4 ESR5 ESR6 3.84 D3SB80 D1 1 40m 1 40m 1 40m ESR7 1 DERA38-06 50m VAMPL = 141.42 1 2 FREQ = 50Hz LESL7 LESL4 LESL5 LESL6 12nH 15nH 15nH 15nH100V/50Hz M1 2SK3681-01S 2 2 2 2 Cd 220pF PARAMETERS: 0 D3 Np = 57 R7 D1NL20U_S 2k 10 R8 Ns = 10 R15 C10 R10 4.7k Nsub = 8 200k 0.01uF FB Lp = 360uH R6 10k R1 Rsns Nsp = {Ns/Np} 7.5k 100 C8 R3 0.22 Nsubp = {Nsub/Np} R11 2200pF 13k D4 R14 PC1 100 D1NL20U_S 0 TLP281 C9 R13 R5 0.01uF 100k IS K 10k IC1 FA5541 R12 REF ZCD D2 4.7 SR1 ZCD VH TA76432F R4 1 A FB NC 15k C13 DERA22-02 IS VCC Lsub 22pF FB {Nsubp*Nsubp*Lp} GND OUT SSIC = 0 2 C12 C11 IC=0/1 C3 1000pF 4700pF 33uF IC = 10.199 0 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 3
  4. 4. 1.1 Output voltage • Simulation result confirming that the output voltage would be 19 Volt at 5-A load. The result also shows that the circuit need 60ms to reach steady state. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 4
  5. 5. 1.2 Output current • Simulation result confirming that the output current would be 5 Amp. The result also shows that the circuit need 60ms to reach steady state. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 5
  6. 6. 1.3 Output ripple voltage • Simulation results shows the output ripple voltage at maximum current load (approximately 17.5mVP-P). All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 6
  7. 7. 1.4 Step-load response • Simulation results shows waveform of the output voltage responding to stepping current 3/5A. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 7
  8. 8. 2.Basic operation of switching power supply using FA5541 T1 D1 Id OFF M1 ON + OUT Cd 0 0 Vds RZCD ZCD RS - CZCD K 0 REF 0 A IS + 0 FB V(RS) = Id*RS - 0 • Power supply using FA5541 is switching using self-excited oscillation. • When IC turns the MOSFET ON ,drain current Id (primary current of T1) begins to rise from zero. • V(IS pin) is voltage-converted from the Id current. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 8
  9. 9. 2.Basic operation of switching power supply using FA5541 VG M1 turns ON M1 turns OFF VDS and winding voltage have step change Vds Id begins rising Id reaches reference level Id • When Id reaches the reference level, FA5541 will turn M1 OFF All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 9
  10. 10. 2.Basic operation of switching power supply using FA5541 IF(D1) T1 D1 ON M1 OFF + OUT Cd 0 0 Vds RZCD ZCD RS - CZCD K 0 REF 0 A IS 0 FB 0 • When M1 turns OFF ,and the winding voltage of the transformers has step change and IF(D1) is provided from the transformer into secondary side. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 10
  11. 11. 2.Basic operation of switching power supply using FA5541 IF(D1) IF(D1) is provided from the transformer into secondary side IF(D1) gets zero Vsub drops VSUB rapidly V(ZCD) < Vth, V(ZCD) Id begins rising M1 turns ON Vth • When IF(D1) gets zero, Vds drops rapidly due to resonance of transformers inductance and Cd. At the same time Vsub also drops rapidly. • When V(ZCD) < Vth(of valley detection) ,FA5541 turns M1 ON again All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 11
  12. 12. 3.Start-up sequence simulation K K1 K_Linear C14 COUPLING = 1 L1 = Ls 4700pF L2 = Lp L3 = Lsub C_T1 D21 2200pF Y G865C15R 19V / 0 to 5A L1 4.7uH 1 2 VO_19V C2 2 1 R2 C1 56k 2200pF Ls D22 220uF Lp {Nsp*Nsp*Lp} Y G865C15R RL V1 DBR1 {Lp} C4 3.84 D3SB80 9900uF C7 D1 3300uFx3 1000u VAMPL = 141.42 DERA38-06 1 2 FREQ = 50 100V/50Hz M1 2SK3681-01S Cd 220pF PARAMETERS: 0 D3 Np = 57 R7 D1NL20U_S 2k 10 R8 Ns = 10 R15 C10 R10 4.7k Nsub = 8 200k 0.01uF FB Lp = 360uH R6 10k R1 Rsns Nsp = {Ns/Np} 7.5k 100 C8 R3 0.22 Nsubp = {Nsub/Np} R11 2200pF 13k D4 R14 PC1 100 D1NL20U_S 0 TLP281 C9 R13 R5 0.01uF 100k IS K 10k IC1 FA5541 R12 REF ZCD D2 4.7 SR1 ZCD VH TA76432F R4 1 A FB NC 15k C13 DERA22-02 IS VCC Lsub 22pF FB GND OUT {Nsubp*Nsubp*Lp} Auxiliary SSIC = 0 2 C12 C11 C3 33u winding 1000pF 4700pF CVCC 0 No parasitic elements and no initial condition is set All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 12
  13. 13. 3.Start-up sequence simulationVCC VSTOFF VCCON ,VSTRST1 Auxiliary supply takes over VCC pin stop charging currentOUT FA5541 turn off FA5541 turn on t1 t2 t3 Total start-up time All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 13
  14. 14. 3.Start-up sequence simulationFA5541 under voltage lockout (UVLO) characteristics (VCC pin) ON threshold voltage: VCCON = 10.2V Startup circuit shutdown: VSTOFF = 12.4V Startup circuit reset voltage: VSTRST1 = 10.2V IC1 FA5541 ZCD VH FB NC R12 D2 I(Aux) 4.7 1 IS VCC C2 GND OUT 33u DERA22-02 SSIC = 0 I(VCC) Lsub {Nsubp*Nsubp*Lp} 2 0t1,t2: VCC < VSTOFF ,startup circuit turns on ,VCC pin charges capacitor CVCC (C2).t2: VCC reaches VCCON ,FA5541 is turned ont3: after VCC reaches VSTOFF ,startup circuit turns off , VCC decreases until Auxiliary supply takes over. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 14
  15. 15. 3.Start-up sequence simulation Design margin (CVCC=33uF) Design margin (CVCC=22uF) VSTRST1 CVCC=22uF CVCC=33uF VCC (CVCC=22uF) Total start-up time (CVCC=33uF) • the simulation result shows the tradeoff between Total start-up time and Design margin, which is the difference of V(VCC) and VSTRST1 when the auxiliary winding takes over from the IC startup circuit. • 33uF-CVCC is selected for higher Design margin although total start-up time is high. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 15
  16. 16. 4.Bridge diode peak current at start-up K K1 K_Linear C14 COUPLING = 1 L1 = Ls 4700pF L2 = Lp L3 = Lsub C_T1 D21 2200pF Y G865C15R 19V / 0 to 5A L1 4.7uH 1 2 VO_19V R2 C3 2 1 56k 2200pF C1 Lp Ls D22 220uF {Lp} {Nsp*Nsp*Lp} Y G865C15R RL V1 DBR1 C4 3.84 D3SB80 D1 9900uF C7 DERA38-06 1 2 3300uFx3 1000u VAMPL = 141.42 FREQ = 50 100V/50Hz M1 2SK3681-01S Cd 220pF PARAMETERS: 0 D3 Np = 57 R7 D1NL20U_S 2k 10 R8 Ns = 10 R15 C10 R10 4.7k Nsub = 8 200k 0.01uF FB Lp = 360uH R6 10k R1 Rsns Nsp = {Ns/Np} 7.5k 100 C8 R3 0.22 Nsubp = {Nsub/Np} R11 2200pF 13k D4 R14 PC1 100 D1NL20U_S 0 TLP281 C9 R13 R5 0.01uF 100k IS K 10k IC1 FA5541 R12 REF ZCD D2 4.7 SR1 ZCD VH TA76432F R4 1 Lsub A FB NC 15k {Nsubp*Nsubp*Lp} C13 DERA22-02 IS VCC 22pF FB GND OUT SSIC = 0 2 C12 C11 C2 1000pF 4700pF {Cv cc} PARAMETERS: CVCC = 33u 0 No parasitic elements and no initial condition is set All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 16
  17. 17. 4.Bridge diode peak current at start-up I • Simulation result of the current through bridge rectifier diode DBR1 when the power supply is plug to the wall outlet. the peak current is approximately 9.8 which is less than Absolute maximum value IFSM from the datasheet. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 17
  18. 18. 5.Transformer K K1 K_Linear C14 COUPLING = 1 L1 = Ls 4700pF L2 = Lp L3 = Lsub C_T1 D21 2200pF Y G865C15R 19V / 0 to 5A L1 4.7uH 1 2 VO_19V R2 C3 2 1 56k 2200pF C1 Lp Ls D22 V+ V+ 220uF {Lp} {Nsp*Nsp*Lp} Y G865C15R RL V1 DBR1 IC = 139 C4 3.84 D3SB80 D1 9900uF C7 DERA38-06 3300uFx3 1000u VAMPL = 141.42 1 2 IC = 18.7 FREQ = 50 V- V- 100V/50Hz M1 2SK3681-01S Cd 220pF PARAMETERS: 0 D3 Np = 57 R7 D1NL20U_S 2k 10 R8 Ns = 10 R15 C10 R10 4.7k Nsub = 8 200k 0.01uF FB Lp = 360uH R6 10k R1 Rsns Nsp = {Ns/Np} 7.5k 100 C8 R3 0.22 Nsubp = {Nsub/Np} R11 2200pF 13k D4 R14 PC1 100 D1NL20U_S 0 TLP281 C9 R13 R5 0.01uF 100k IS K 10k IC1 FA5541 R12 REF ZCD D2 4.7 SR1 ZCD VH TA76432F R4 1 Lsub A FB NC 15k {Nsubp*Nsubp*Lp} DERA22-02 V+ C13 IS VCC 22pF FB GND OUT SSIC = 1 2 C12 C11 C2 V- 1000pF 4700pF 33u IC = 4.2 IC = 10.199 0 No parasitic elements All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 18
  19. 19. 5.TransformerVP(t)-VS(t)-VSUB(t) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 19
  20. 20. 5.Transformer • Lleak = LP(1-k2) • LS/LP = N2 N : winding ratio of the transformer VS = VP*(NS/NP) VSUB = VP*(NSUB/NP)• Transformer is modeled by using SPICE primitive k ,the transformer spec is Lp=360uH and Np:Ns:Nsub=57:10:8 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 20
  21. 21. 6.Transformer leakage inductance Parametric sweep “k” K K1 K_Linear COUPLING = {k} C14 L1 = Ls PARAMETERS: L2 = Lp k = 0.98 L3 = Lsub 4700pF C_T1 Cclp = 2200pF D21 2200pF 1 Y G865C15R Rp_T1 3 2 L1 RSL1 19V / 0 to 5A 0.150 4.7uH 150m 1 2 VO_19V R2 C2 2 1 C4 C5 C6 C7 56k {Cclp} 3300uF 3300uF 3300uF C1 D22 IC = 19.60 1000uF IL 220uF Lp Ls Y G865C15R IC = 18.8 5Adc V1 DBR1 IC = 139 {Lp} {Nsp*Nsp*Lp} ESR4 ESR5 ESR6 D3SB80 D1 1 40m 1 40m 1 40m ESR7 1 DERA38-06 50m VAMPL = 141.42 1 2 FREQ = 50Hz LESL7 LESL4 LESL5 LESL6 12nH 15nH 15nH 15nH100V/50Hz M1 2SK3681-01S 2 2 2 2 Cd 220pF PARAMETERS: 0 D3 Np = 57 R7 D1NL20U_S 2k 10 R8 Ns = 10 R15 C10 R10 4.7k Nsub = 8 200k 0.01uF FB Lp = 360uH R6 10k R1 Rsns Nsp = {Ns/Np} 7.5k 100 C8 R3 0.22 Nsubp = {Nsub/Np} R11 2200pF 13k D4 R14 PC1 100 D1NL20U_S 0 TLP281 C9 R13 R5 0.01uF 100k IS K 10k IC1 FA5541 R12 REF ZCD D2 4.7 SR1 ZCD VH TA76432F R4 1 A FB NC 15k C13 DERA22-02 IS VCC Lsub 22pF FB {Nsubp*Nsubp*Lp} GND OUT C12 SSIC = 1 2 C11 IC=0/1 C3 1000pF 4700pF 33uF IC = 4.2 IC = 10.199 0 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 21
  22. 22. 6.Transformer leakage inductance M1: VDSS=600V Design margin (Lleak=14.256uH) M1: VDS(t) (Zoom) Design margin (Lleak=7.164uH) • Transformer model using SPICE primitive k ,leakage inductance: Lleak = LP(1-k2) • LP=360uH ,leakage inductance is14.256uH for k=0.98 and 7.164uH for k=0.99 • Check the VDS overshoot voltage versus the transformer leakage inductance. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 22
  23. 23. 7.RCD Clamping network Parametric K K1 K_Linear COUPLING = {k} C14 sweep “Cclp” PARAMETERS: L1 = Ls L2 = Lp k = 0.98 L3 = Lsub 4700pF C_T1 Cclp = 2200pF D21 2200pF 1 Y G865C15R Rp_T1 3 2 L1 RSL1 19V / 0 to 5A 0.150 4.7uH 150m 1 2 VO_19V R2 C2 2 1 C4 C5 C6 C7 56k {Cclp} 3300uF 3300uF 3300uF C1 D22 IC = 19.60 1000uF IL 220uF Lp Ls Y G865C15R IC = 18.8 5Adc V1 DBR1 IC = 139 {Lp} {Nsp*Nsp*Lp} ESR4 ESR5 ESR6 D3SB80 D1 1 40m 1 40m 1 40m ESR7 1 DERA38-06 50m VAMPL = 141.42 1 2 FREQ = 50Hz LESL7 LESL4 LESL5 LESL6 12nH 15nH 15nH 15nH100V/50Hz M1 2SK3681-01S 2 2 2 2 Cd 220pF PARAMETERS: 0 D3 Np = 57 R7 D1NL20U_S 2k 10 R8 Ns = 10 R15 C10 R10 4.7k Nsub = 8 200k 0.01uF FB Lp = 360uH R6 10k R1 Rsns Nsp = {Ns/Np} 7.5k 100 C8 R3 0.22 Nsubp = {Nsub/Np} R11 2200pF 13k D4 R14 PC1 100 D1NL20U_S 0 TLP281 C9 R13 R5 0.01uF 100k IS K 10k IC1 FA5541 R12 REF ZCD D2 4.7 SR1 ZCD VH TA76432F R4 1 A FB NC 15k C13 DERA22-02 IS VCC Lsub 22pF FB {Nsubp*Nsubp*Lp} GND OUT C12 SSIC = 1 2 C11 IC=0/1 C3 1000pF 4700pF 33uF IC = 4.2 IC = 10.199 0 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 23
  24. 24. 7.RCD Clamping network M1: VDSS=600V Design margin (CCLP=C2=220pF) M1: VDS(t) (Zoom) Design margin (CCLP=C2=2200pF) M1: VDS(t) • Compare VDS overshoot of the circuit with CCLP(C2) = 220pF and 2200pF ,larger CCLP value get better design margin for MOSFET VDS • CCLP=2200uF is selected for the better M1: VDS design margin. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 24
  25. 25. 8.Power MOSFET switching device K K1 K_Linear COUPLING = 0.98 C14 L1 = Ls L2 = Lp L3 = Lsub 4700pF C_T1 D21 2200pF 1 Y G865C15R Rp_T1 3 2 L1 RSL1 19V / 0 to 5A 0.150 4.7uH 150m 1 2 VO_19V R2 C2 2 1 C4 C5 C6 C7 56k 2200pF 3300uF 3300uF 3300uF C1 D22 IC = 19.61 1000uF IL 220uF Lp Ls Y G865C15R IC = 18.8 5Adc V1 DBR1 IC = 139 {Lp} {Nsp*Nsp*Lp} ESR4 ESR5 ESR6 D3SB80 D1 1 40m 1 40m 1 40m ESR7 1 DERA38-06 50m VAMPL = 141.42 1 2 FREQ = 50Hz LESL7 LESL4 LESL5 LESL6 12nH 15nH 15nH 15nH100V/50Hz M1 2SK3681-01S 2 2 2 2 Cd 220pF PARAMETERS: 0 D3 Np = 57 R7 D1NL20U_S 2k 10 R8 Ns = 10 R15 C10 R10 4.7k Nsub = 8 200k 0.01uF FB Lp = 360uH R6 10k R1 Rsns Nsp = {Ns/Np} 7.5k 100 C8 R3 0.22 Nsubp = {Nsub/Np} R11 2200pF 13k D4 R14 PC1 100 D1NL20U_S 0 TLP281 C9 R13 R5 0.01uF 100k IS K 10k IC1 FA5541 R12 REF ZCD D2 4.7 SR1 ZCD VH TA76432F R4 1 A FB NC 15k C13 DERA22-02 IS VCC Lsub 22pF FB {Nsubp*Nsubp*Lp} GND OUT C12 SSIC = 1 2 C11 IC=0/1 C3 1000pF 4700pF 33uF IC = 4.2 IC = 10.199 0 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 25
  26. 26. 8.Power MOSFET switching device Peak value VDS(t) ID(t) 10usec. / Div. Peak value VDS(t) ID(t) 20msec. / Div. • Simulation results shows the peak value of M1: VDS and ID . All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 26
  27. 27. 8.Power MOSFET switching device M1 Power Loss M1 Power Lossavg 10usec. / Div. Peak value VDS(t) ID(t) VGS(t) • Simulation results shows the peak value of MOSFET VDS and ID . Calculated switching power loss and average power loss are also shown All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 27

×