PSpiceによるバッテリー回路アプリケーション
Upcoming SlideShare
Loading in...5
×
 

PSpiceによるバッテリー回路アプリケーション

on

  • 1,484 views

PSpiceによるバッテリー回路アプリケーション(POWER POINT VERSION)

PSpiceによるバッテリー回路アプリケーション(POWER POINT VERSION)

Statistics

Views

Total Views
1,484
Views on SlideShare
1,484
Embed Views
0

Actions

Likes
0
Downloads
2
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    PSpiceによるバッテリー回路アプリケーション PSpiceによるバッテリー回路アプリケーション Presentation Transcript

    • PSpiceによるバッテリー回路アプリケーション
      株式会社ビー・テクノロジーhttp://www.bee-tech.com/horigome@bee-tech.com
      1
      Copyright (C) Bee Technologies Inc. 2010
    • 2
      Copyright (C) Bee Technologies Inc. 2010
    • モデル
      デザインキット回路方式のテンプレート
      回路解析シミュレータPSpice (ABMライブラリーが豊富)
      3
      Copyright (C) Bee Technologies Inc. 2010
      ABM=Analog Behavior Model
    • Copyright (C) Bee Technologies Inc. 2010
      4
      http://www.bee-tech.com/
    • スパイス・パーク http://www.spicepark.com/55種類のデバイス、3,328モデル(2010年7月29日現在)をご提供中。現在、グローバル版スパイス・パークを準備中。
      5
      Copyright (C) Bee Technologies Inc. 2010
    • Copyright (C) Bee Technologies Inc. 2010
      6
      Bee Style: http://www.spicepark.com/スパイス・パークのログイン後トップページにて、PDFでバックナンバーも含めPDF形式で参照及びダウンロード出来ます。
    • バッテリーのスパイスモデルの推移
      7
      Copyright (C) Bee Technologies Inc. 2010
      リチウムイオン電池ニッケル水素電池
      鉛蓄電池
    • 8
      Copyright (C) Bee Technologies Inc. 2010
    • Design Kit
      PV Li-Ion Battery System
      9
      Copyright (C) Bee Technologies Inc. 2010
    • BAYSUN’s Lithium-Ion Batteries Pack : Power Battery Plus (PBT-BAT-0001)
      • Capacity............................65[Wh], 4400[mAh] (Approximately)
      • Rated Current....................3[A]
      • Input Voltage.......................20.5 [Vdc]
      • Output Voltage....................12.8 ~ 16.4 [Vdc] ( 4 cells )
      • Charging time......................5[hours] (Approximately)
      1.1 Lithium-Ion Batteries Pack Specification
      10
      Copyright (C) Bee Technologies Inc. 2010
    • 1.2 Discharge Time Characteristics
      0.2C ( 880 mA )
      0.5C ( 2200 mA )
      1C ( 4400 mA )
      TSCALE=3600 means time Scale (Simulation time : Real time) is 1:3600
      Batteries Pack Model Parameters
      NS (number of batteries in series) = 4 cells
      C (capacity) = 4400 mA
      SOC1 (initial state of charge) = 100%
      TSCALE (time scale) , simulation : real time
      1 : 3600s or
      1s : 1h
      Discharge Rate : 0.2C(880mA), 0.5C(2200mA), and 1C(4400mA)
      11
      Copyright (C) Bee Technologies Inc. 2010
    • 1.3 Single Cell Discharge Characteristics
      Single cell discharge characteristics are compared between measurement data and simulation data.
      Single cell
      Measurement
      Simulation
      12
      Copyright (C) Bee Technologies Inc. 2010
    • 1.4 Charge Time Characteristics
      SOC [%]
      Vbatt [V]
      ICharge [A]
      Batteries Pack Model Parameters
      NS (number of batteries in series) = 4 cells
      C (capacity) = 4400 mA
      SOC1 (initial state of charge) = 100%
      TSCALE (time scale) , simulation : real time
      1 : 3600s or
      1s : 1h
      Charger Adaptor
      Input Voltage = 20.5 Vdc
      Input Current = 880 mA(max.)
      13
      Copyright (C) Bee Technologies Inc. 2010
    • BP Solar’s photovoltaic module : SX330
      • Maximum power (Pmax)..............30[W]
      • Voltage at Pmax (Vmp).............16.8[V]
      • Current at Pmax (Imp)...............1.78[A]
      • Short-circuit current (Isc)...........1.94[A]
      • Open-circuit voltage(Voc)...........21.0[V]
      2.1 Solar Cells Specification
      502mm
      595mm
      14
      Copyright (C) Bee Technologies Inc. 2010
    • 2.2 Output Characteristics vs. Incident Solar Radiation
      SX330 Output Characteristics vs. Incident Solar Radiation
      SOL=1
      Current (A)
      SOL=0.5
      SOL=0.16
      SOL=1
      Power (W)
      Parameter, SOL is added as normalized incident radiation, where SOL=1 for AM1.5 conditions
      SOL=0.5
      SOL=0.16
      Voltage (V)
      15
      Copyright (C) Bee Technologies Inc. 2010
    • 3. Solar Cell Battery Charger
      Solar Cell charges the Li-ion batteries pack (PBT-BAT-001) with direct connect technique. Choose the solar cell that is able to provide current at charging rate or more with the maximum power voltage (Vmp) nears the batteries pack charging voltage.
      PBT-BAT-0001 (Li-ion batteries pack)
      Charging time is approximately 5 hours with charging rate 0.2C or 880mA
      Voltage during charging with 0.2C is between 14.7 to 16.9 V
      16.9 V
      14.7 V
      0.2C or 880mA
      16
      Copyright (C) Bee Technologies Inc. 2010
    • 3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit
      Over Voltage Protection Circuit
      Short circuit current ISC depends on condition: SOL
      16.8V Clamp Circuit
      Lithium-Ion Batteries Pack
      Photovoltaic Module
      PBT-BAT-0001 (BAYSUN)
      DC12.8~16.4V (4 cells)
      4400mAh
      SX 330 (BP Solar)
      Vmp=16.8V
      Pmax=30W
      17
      Copyright (C) Bee Technologies Inc. 2010
    • 3.2 PV Li-Ion Battery Charger Circuit
      Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident radiation, where SOL=1 for AM1.5 conditions.
      18
      Copyright (C) Bee Technologies Inc. 2010
    • 3.3 Charging Time Characteristics vs. Weather Condition
      Simulation result shows the charging time for sol = 1, 0.5, and 0.16.
      sol = 1.00
      sol = 0.50
      sol = 0.16
      19
      Copyright (C) Bee Technologies Inc. 2010
    • 3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit + Constant Current
      Over Voltage Protection Circuit
      Short circuit current ISC depends on condition: SOL
      16.8V Clamp Circuit
      Lithium-Ion Batteries Pack
      Photovoltaic Module
      Constant Current Control Circuit
      PBT-BAT-0001 (BAYSUN)
      DC12.8~16.4V (4 cells)
      4400mAh
      SX 330 (BP Solar)
      Vmp=16.8V
      Pmax=30W
      Icharge=0.2C (880mA)
      20
      Copyright (C) Bee Technologies Inc. 2010
    • 3.5 Constant Current PV Li-Ion Battery Charger Circuit
      Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the
      “PARAMETERS: CAh = 4400m and rate = 0.2 ” to set the charging current.
      21
      Copyright (C) Bee Technologies Inc. 2010
    • 3.6 Charging Time Characteristics vs. Weather Condition(Constant Current)
      Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate current more than the constant charge rate (0.2A), battery can be fully charged in about 5 hour.
      sol = 1.00
      sol = 0.50
      sol = 0.16
      22
      Copyright (C) Bee Technologies Inc. 2010
    • 4.1 Concept of Simulation PV Li-Ion Battery System in 24hr.
      Over Voltage Protection Circuit
      The model contains 24hr. solar power data (example).
      16.8V Clamp Circuit
      Photovoltaic Module
      Lithium-Ion Batteries Pack
      Low-Voltage Shutdown Circuit
      PBT-BAT-0001 (BAYSUN)
      DC12.8~16.4V (4 cells)
      4400mAh
      SX 330 (BP Solar)
      Vmp=16.8V
      Pmax=30W
      Vopen= (V)
      Vclose= (V)
      DC/DC Converter
      DC Load
      VIN = 5V
      IIN = 1.5A
      VIN=10~18V
      VOUT=5V
      23
      Copyright (C) Bee Technologies Inc. 2010
    • 4.2 Short-Circuit Current vs. Time (24hr.)
      Short-circuit current vs. time characteristics of photovoltaic module SX330 for 24hours as the solar power profile (example) is included to the model.
      The model contains 24hr. solar power data (example).
      24
      Copyright (C) Bee Technologies Inc. 2010
    • 4.3 PV-Battery System Simulation Circuit
      Solar cell model with 24hr. solar power data.
      Set initial battery voltage, IC=16.4, for convergence aid.
      SOC1 value is initial State Of Charge of the battery, is set as 70% of full voltage.
      Lopen value is load shutdown voltage. Lclose value is load reconnect voltage
      7.5W Load (5Vx1.5A).
       Simulation at 15W load, change I1 from 1.5A to 3A
      25
      Copyright (C) Bee Technologies Inc. 2010
      DCDCコンバータの簡易モデル
      DCACコンバータの簡易モデルもあります。
    • 4.3.1 Simulation Result (SOC1=100)
      PV generated current
      PV module charge the battery
      Battery voltage
      Battery current
      Battery supplies current when solar power drops.
      Fully charged, stop charging
      SOC1=100
      Battery SOC
      DC output voltage
      DC/DC input current
      Charging time
      C1: IC=16.4
      Run to time: 24s (24hours in real world)
      Step size: 0.01s
      • .Options ITL4=1000
      26
      Copyright (C) Bee Technologies Inc. 2010
    • 4.3.2 Simulation Result (SOC1=70)
      PV generated current
      PV module charge the battery
      V=Lopen
      Battery voltage
      V=Lclose
      Battery current
      Battery supplies current when solar power drops.
      SOC1=70
      Fully charged, stop charging
      Battery SOC
      Shutdown
      DC output voltage
      DC/DC input current
      Reconnect
      Charging time
      C1: IC=16.4
      Run to time: 24s (24hours in real world)
      Step size: 0.01s
      SKIPBP
      • .Options ITL4=1000
      27
      Copyright (C) Bee Technologies Inc. 2010
    • 4.3.3 Simulation Result (SOC1=30)
      PV generated current
      PV module charge the battery
      Battery voltage
      V=Lopen
      Battery current
      V=Lclose
      Battery supplies current when solar power drops.
      Fully charged, stop charging
      Battery SOC
      SOC1=30
      DC output voltage
      Shutdown
      DC/DC input current
      Reconnect
      Charging time
      C1: IC=15
      Run to time: 24s (24hours in real world)
      Step size: 0.01s
      Total job time = 2s
      • .Options ITL4=1000
      28
      Copyright (C) Bee Technologies Inc. 2010
    • 4.3.4 Simulation Result (SOC1=10)
      PV generated current
      PV module charge the battery
      Battery voltage
      Battery current
      V=Lclose
      Battery supplies current when solar power drops.
      Fully charged, stop charging
      Battery SOC
      SOC1=10
      DC output voltage
      Shutdown
      DC/DC input current
      Reconnect
      Charging time
      C1: IC=14.4
      Run to time: 24s (24hours in real world)
      Step size: 0.01s
      SKIPBP
      • .Options RELTOL=0.01
      • .Options ITL4=1000
      29
      Copyright (C) Bee Technologies Inc. 2010
    • 4.3.5 Simulation Result (SOC1=100, IL=3A or 15W load)
      PV generated current
      PV module charge the battery
      V=Lopen
      Battery voltage
      V=Lopen
      Battery current
      Battery supplies current when solar power drops.
      Fully charged, stop charging
      SOC1=100
      Battery SOC
      DC output voltage
      Shutdown
      Shutdown
      DC/DC input current
      Charging time
      C1: IC=16.4
      Run to time: 24s (24hours in real world)
      Step size: 0.001s
      • .Options ITL4=1000
      30
      Copyright (C) Bee Technologies Inc. 2010
    • 4.3.4 Simulation Result (Example of Conclusion)
      If initial SOC is 100%,
      this system will never shutdown.
      If initial SOC is 70%,
      this system will shutdown after 5.185 hours (about 5:11AM.).
      system load will reconnect again at 7:40AM (Morning).
      If initial SOC is 30%,
      this system will shutdown after 1.633 hours (about 1:38AM.).
      system load will reconnect again at 7:37AM (Morning).
      If initial SOC is 10%,
      this system will start shutdown.
      this system will reconnect again at 7:37AM (Morning).
      With the PV generated current profile, battery will fully charged in about 4.25 hours.
      31
      Copyright (C) Bee Technologies Inc. 2010
      The simulation start from midnight(time=0). The system supplies DC load 7.5W.
    • 4.3.4 Simulation Result (Example of Conclusion)
      If initial SOC is 100%,
      this system will shutdown after 3.897 hours (about 3:54AM.).
      system load will reconnect again at 7:37AM (Morning).
      this system will shutdown again at 8:28 PM (Night).
      With the PV generated current profile, battery will fully charged in about 5.5 hours.
      32
      Copyright (C) Bee Technologies Inc. 2010
      The simulation start from midnight(time=0). The system supplies DC load 15W.
    • Bee Technologies Group
      デバイスモデリング
      スパイス・パーク(スパイスモデル・ライブラリー) 
      デザインキット
      デバイスモデリング教材
      【本社】
      株式会社ビー・テクノロジー
      〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階
      代表電話: 03-5401-3851
      設立日:2002年9月10日
      資本金:8,830万円
      【子会社】
      Bee Technologies Corporation (アメリカ)
      Siam Bee Technologies Co.,Ltd. (タイランド)
      お問合わせ先)
      info@bee-tech.com
      33
      Copyright (C) Bee Technologies Inc. 2010
      本ドキュメントは予告なき変更をする場合がございます。
      ご了承下さい。また、本文中に登場する製品及びサービスの名称は全て関係各社または個人の各国における商標または登録商標です。本原稿に関するお問い合わせは、当社にご連絡下さい。