SlideShare a Scribd company logo
1 of 47
Download to read offline
Rectifiers                        PFC                                  D2
                                                         2              1
                                                                         L1
PARAMETERS:                                                                           Diode
                                                         1              2
f req = 50Hz                                                 L2
Vin = 100Vac                                                              0        Q1
                                                                                   MOSFET
                                         C1        TB6819AFG                                  C2         ILoad
   Vac, in
                                         1uF
                                                   Controller                                 200u
                                                                                                         0.5A
                                                   Circuit

                                                                              R7



                                                                                                     0



Design KIT:
Critical Conduction Mode (CRM)
PFC Circuit
                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                      1
Contents

• Introduction
• Application Circuit
• Design Specification
• Time Scaling
• Application Circuit with Time Scaling (tscale =10)
• Common Mode Choke Coil for PFC
• Design Steps (1-8)
• Switching Devices VPEAK and IPEAK at Steady State
• Switching Devices VPEAK and IPEAK at Start Up
Appendix
A.Excel Calculation Sheet
B.Simulation Index

                     All Rights Reserved Copyright (C) Bee Technologies Corporation 2012   2
Introduction

       PARAMETERS:                                   bulk                      Vbulk
                                       DB1
       f req = 50Hz                    Diode
       Vin = 100Vac
         Iline                                       DB4
                      AC_IN1
Vin                                                                                               Load
                                                                                Cbulk             1.414Adc
                                                                                2000uF

                                          DB3           DB2
                      AC_IN2




                                                                                              0

          Most electronic ballasts and switching power supplies use a bridge rectifier
      and a bulk storage capacitor to derive raw dc voltage from the utility ac line,
      figure above: Vin=100Vac, 50Hz and PO=200W.

                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2012             3
Introduction
  200V
          |VAC, in, 100V| (VPEAK, in=100*2=141.42V) and Vbulk

  100V

  SEL>>
     0V
          ABS( V(AC_IN1,AC_IN2) )           V(bulk)
   20A
                        |Iline|
   10A



    0A
          ABS( I(Vin) )
   1.0
   0.8    Power Factor Ratio = Pin, avg./(Vin, rms* Iin, rms)
   0.6
   0.4
   0.2
      0
     160ms    164ms     168ms     172ms    176ms     180ms     184ms                    188ms       192ms   196ms   200ms
         AVG(ABS(W(Vin)))/(RMS(ABS(V(AC_IN1,AC_IN2)))*RMS(ABS(I(Vin))))
                                                      Time


      The Uncorrected Power Factor rectifying circuit draws current from the ac line
    when the ac voltage exceeds the capacitor voltage (Vbulk). The current (Iline) is non-
    sinusoidal. This results in a poor power factor condition where the apparent input
    power is much higher than the real power, figure above, power factor ratios of 0.5 to
    0.7 are common.

                                  All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                       4
Introduction

                  Rectifiers                        PFC                                  D2      VDC, OUT
                                                            2              1
                                                                            L1
   PARAMETERS:                                                                           Diode
                                                            1              2
   f req = 50Hz                                                 L2
   Vin = 100Vac                                                              0
Iline                                                                                 Q1
                                                                                      MOSFET
                                            C1        TB6819AFG                                    C2           ILoad
        Vac, in
                                            1uF
                                                      Controller                                   200u
                                                                                                                0.5A
                                                      Circuit

                                                                                 R7



                                                                                                            0


  The Power Factor Correction (PFC) circuit, as an off-line active preconverter, is
designed to draw a sinusoidal current from the AC line that is in phase with input
voltage. As a result, the power factor ratio is improved to be near to ideal (1).
  The TB6819AFG is a critical conduction mode (CRM) PFC controller IC. The
description including equation and constants as a guide to understand its designing
process is included in this document.

                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                          5
Introduction
     160V       600V
1           2                                                                                        VAC, in, 100V and VDC, OUT, 400V

       0V       400V


                  >>
    -160V       200V
                        1      V(AC_IN1,AC_IN2)   2     V(VOUT)
                8.0A
                                                                                                                            Iline

                  0A


                SEL>>
                -8.0A
                            -I(Vin)
                 1.0
                 0.8
                 0.6        Power Factor Ratio = 0.85
                 0.4
                 0.2
                                                                                                       *simulation result at tscale = 10
                    0
                   100ms    104ms    108ms     112ms    116ms     120ms    124ms     128ms                   132ms       136ms      140ms
                       AVG(ABS(W(Vin))) / (RMS(ABS(V(AC_IN1,AC_IN2)))*RMS(ABS(I(Vin))))
                                                                 Time*10


     The poor power factor load is corrected by keeping the ac line current sinusoidal and in
    phase with the line voltage. This results with power factor ratio is 0.85.


                                      All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                                   6
Application Circuit
                                                                                                                                         PARAMETERS:
                                                                                                                                         L = 230u
                                                                                                                                         N = {1/9.6}
                                                                                      D3                                                 N=N2/N1, L2=(N^2)*L1
                                                                                                                                                                                                    PO = 200W,
                                                                                      Diode
                                                                                                                                         L1                  K1                                     VDC, OUT = 400VDC
                                                                                                                                         {L}                                      D2
   PARAMETERS:                 DB1   Rtf                                                                                           2                   1
                                                                                                                                                             K        V1                            VOUT
   f req = 50                Diode                                                                                                                           K_Linear             Diode
                                                                                                                                   1                   2     COUPLING = 1
   Vin = 100                                                                 R11                                                         L2
                                     DB4                                     360k                                                        {N*N*L}             L1 = L1
    AC_IN1                                                                                                                                                   L2 = L2

                                                                                                                                       V2
                                                                                                                                                             0
                                                                                       D4                  R8                                                                                  R2
       Vin                    DB3     DB2                                              Diode               100k                                        R5                         Q1       1.5MEG
       FREQ = {f req}                                                                                                                                                             MOSFET
       VAMPL = {Vin*1.414}                                                                                                                             10

                                                                   VCC                                                     R6                                        R12                             C2     200uF
                                                                                                                          68k
    AC_IN2                                                R9                                  C7                                                                                                     IC = {2.51*1509.53/9.53}
                                                                                                                                                                     39k
                                            C1            3MEG                                8p
     VAC, in=85-265VAC                      1u




                                                                                                           POUT



                                                                                                                                 ZCD
                                                                                                                                                                                                                           Load
                                                                                                                                                                                                                           0.5A
                                                                                                                                            U1




                                                                                                   VCC

                                                                                                              COMP POUT



                                                                                                                                   ZCD
                                                                                                                          GND
                                                                                                                                            TB6819AFG

*Analysis directives:




                                                                                                   FB_IN



                                                                                                                          MULT
.TRAN 0 20ms 0 100n




                                                                                                                                   IS
.OPTIONS ABSTOL= 100n                                    MULT
.OPTIONS GMIN= 1.0E-8                                                                                                                                       FB_IN

.OPTIONS ITL1= 500                                                                                                COMP
.OPTIONS ITL2= 200                                                   C8        C9                  R3
.OPTIONS ITL4= 40                                  R10
                                                   22k             47uF      0.1uF
                                                                                     D5
                                                                                     DZ18V
                                                                                                   10k
                                                                                                                                       IS
                                                                                                                                                            R4 100

.OPTIONS RELTOL= 0.01                                      C5    IC = 17.9
                                                                                                                           C6 3300p
                                                                                         C3        C4                                                                                         R1
.OPTIONS VNTOL= 100u                                      10nF                         0.47uF                                                                              R7               9.53k
                                                                                                   1uF                                                                     0.11

                                                                                     IC = 3.74
                                     0




                                                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                                                                                                        7
Application Circuit
     200V         420V
1             2                                                                                              VAC, in, 100V and VDC, OUT, 400V

       0V         400V


                    >>
    -200V         380V
                          1      V(AC_IN1,AC_IN2)        2   V(VOUT)
                   10A
                                                                                                                                     Iline

                     0A


                  SEL>>
                   -10A
                        0s              2ms        4ms         6ms         8ms        10ms        12ms          14ms          16ms       18ms     20ms
                              -I(Vin)
                                                                                      Time
     1.0


                                                                                                          Power Factor Ratio = 0.85
     0.5




       0
       10ms       11ms        12ms       13ms       14ms       15ms       16ms                           17ms          18ms          19ms       20ms
           AVG(ABS(W(Vin)))/(RMS(ABS(V(AC_IN1,AC_IN2)))*RMS(ABS(I(Vin))))
                                                               Time

           Total simulation time = 1429.49 seconds

                                              All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                                      8
Design Specification

This application circuit is for 400VDC/200W output

Critical Conduction Mode (CRM) PFC Circuit :

  •   VAC, in,min = 85 (VAC)
  •   VAC, in,max = 265 (VAC)
  •   VO = 400 (VDC)
  •   Po = 200 (W)
  •   fs = 20kHz ~ 150kHz, 50kHz
  •    (assumed) = 90%



Control IC :
    • Part # TTB6819AFG (PFC Controller IC)
    • Switching Technique: Critical Conduction Mode (CRM)

                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2012   9
Time Scaling

  The transient (cycle-by-cycle) simulation of PFC circuits is really time (and memory)
consuming exercise, even with a fast computer.
  There is a way to speed up simulations by artificially altering some of the key element values
by using of time scaling ratio (tscale), passed as a parameter to the simulation engine:



                  • F line = F line  tscale

                  • C 2 = C 2  tscale

                  • C 3 = C 3  tscale

                  • C 4 = C 4  tscale

                  • C 5 = C 5  tscale




                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2012    10
Application Circuit with Time Scaling (tscale =10)
                                                                                                                                                  PARAMETERS:
                                                                                                                                                  L = 230u
                                                                                                                                                  N = {1/9.6}
                                                                                               D3                                                 N=N2/N1, L2=(N^2)*L1
   PARAMETERS:                                                                                                                                                                                               PO = 200W,
   tscale = 10                                                                                 Diode
                                                                                                                                                  L1                  K1                                     VDC, OUT = 400VDC
                                                                                                                                                  {L}                                      D2
   PARAMETERS:                   DB1   Rtf                                                                                                  2                   1
                                                                                                                                                                      K        V1                            VOUT
   f req = 50                  Diode                                                                                                                                  K_Linear             Diode
                                                                                                                                            1                   2     COUPLING = 1
   Vin = 100                                                                     R11                                                              L2
                                       DB4                                       360k                                                             {N*N*L}             L1 = L1
    AC_IN1                                                                                                                                                            L2 = L2

                                                                                                                                                V2
                                                                                                                                                                      0
                                                                                                D4                  R8                                                                                  R2
       Vin                      DB3     DB2                                                     Diode               100k                                        R5                         Q1       1.5MEG
       FREQ = {f req*tscale}                                                                                                                                                               MOSFET
       VAMPL = {Vin*1.414}                                                                                                                                      10

                                                                           VCC                                                      R6                                        R12                             C2     {200u/tscale}
                                                                                                                                   68k
    AC_IN2                                                  R9                                         C7                                                                                                     IC = {2.51*1509.53/9.53}
                                                                                                                                                                              39k
                                              C1            3MEG                                       8p
     VAC, in=85-265VAC                        1u




                                                                                                                    POUT



                                                                                                                                          ZCD
                                                                                                                                                                                                                                     Load
                                                                                                                                                                                                                                     0.5A
                                                                                                                                                     U1




                                                                                                            VCC

                                                                                                                       COMP POUT



                                                                                                                                            ZCD
                                                                                                                                   GND
                                                                                                                                                     TB6819AFG

*Analysis directives:




                                                                                                            FB_IN



                                                                                                                                   MULT
.TRAN 0 2ms 0 100n




                                                                                                                                            IS
.OPTIONS ABSTOL= 100n                                      MULT
.OPTIONS GMIN= 1.0E-8                                                                                                                                                FB_IN

.OPTIONS ITL1= 500                                                                                                         COMP
.OPTIONS ITL2= 200                                                          C8     C9                       R3
.OPTIONS ITL4= 40                                    R10
                                                     22k               47uF      0.1uF
                                                                                             D5
                                                                                             DZ18V
                                                                                                            10k
                                                                                                                                                IS
                                                                                                                                                                     R4 100

.OPTIONS RELTOL= 0.01                                         C5     IC = 17.9
                                                                                                                                    C6 3300p
                                                                                                   C3       C4                                                                                         R1
.OPTIONS VNTOL= 100u                                        {10n/tscale}                 {0.47u/tscale}                                                                             R7               9.53k
                                                                                                                                                                                    0.11

                                                                                             IC = 3.74      {1u/tscale}
                                       0




                                                   All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                                                                                                               11
Application Circuit with Time Scaling (tscale =10)
     200V         420V
1             2                                                                                              VAC, in, 100V and VDC, OUT, 400V

       0V         400V


                    >>
    -200V         380V
                          1      V(AC_IN1,AC_IN2)        2   V(VOUT)
                   10A
                                                                                                                                     Iline

                     0A


                  SEL>>
                   -10A
                        0s              2ms        4ms         6ms         8ms        10ms        12ms          14ms          16ms       18ms     20ms
                              -I(Vin)
                                                                                    Time*10
     1.0


                                                                                                          Power Factor Ratio = 0.85
     0.5




       0
       10ms       11ms        12ms       13ms       14ms        15ms      16ms                           17ms          18ms          19ms       20ms
           AVG(ABS(W(Vin)))/(RMS(ABS(V(AC_IN1,AC_IN2)))*RMS(ABS(I(Vin))))
                                                              Time*10

           Total simulation time = 132.41 seconds

                                              All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                                      12
Common Mode Choke Coil for PFC



    PARAMETERS:                               To model a simple common mode choke coil, the
    L = 230u
                                              SPICE primitive k, which describes the coupling ratio
                                              between L1 and L2, can be used.
    N = {1/9.6}
    N=N2/N1, L2=(N^2)*L1
                                              COUPLING=1 of K_Linear means there is no leakage
                                              inductance in the common mode choke coil model.
    L1                K1
    {L}
2                 1
                      K                       N is a ratio of L2 turns and L1 turns, or N2/N1
                      K_Linear
1                 2   COUPLING = 1
    L2                                        Input the parameters: L as an L1 inductance value
                      L1 = L1
    {N*N*L}                                   and N, then L2 is calculated using equation: L2 =
                      L2 = L2
                                              N2L1




                           All Rights Reserved Copyright (C) Bee Technologies Corporation 2012    13
Design Steps (1-8)

 (1) Output Voltage and Feedback Circuit

 (2) Output Capacitor

 (3) L1 Inductance

 (4) Input Capacitor

 (5) Auxiliary Winding L2

 (6) Multiplier Input Circuit (MULT)

 (7) Current Detection Circuit (IS)

 (8) Zero Current Detection Circuit (ZCD)




                   All Rights Reserved Copyright (C) Bee Technologies Corporation 2012   14
(1) Output Voltage and Feedback Circuit

  The output voltage is resistively divided and applied to the error amplifier, to set the V O
the R1 and R2 resistor value should satisfy the following equation :


                                          VO  R1
                                                    2.51
                                          R1  R 2

          Output DC Voltage,                               VO                                 400 V
          Error Amplifier Reference Voltage                Verr                           2.51 V
                                                           R2                                 1.5 M
                                                           R1                             9.47 k
                                                           R1 (actual)                  9.53* k


 *With VO=400V and R2=1.5M, R1 is calculated to be 9.47k, however a resistor of 9.53k , which
  is available in the E96 series, is used as R1 (actual).



                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2012            15
(2) Output Capacitor

The output capacitance C2 is determined so that the PFC output ripple voltage dose not
exceed the VOPV-2, for the capacitor selection, the following equation should be satisfied:


                                             PO
                         C2 
                              2  2f in  VO  VOVP-2 /Verr  - 1
                                            2




                                        PO                       200 W
                                        fin                        50 Hz
                                        VO                       400 V
                                        VOVP-2, min             2.63 V
                                        Verr, min               2.46 V
                                        C2                        41 F
                                        C2used                   200 F


The value of VOVP-2, min and Verr, min are inform in the TB6819AFG datasheet.

                          All Rights Reserved Copyright (C) Bee Technologies Corporation 2012   16
Simulation of Step (1) and (2)
                               Vin = 100Vac with
                                                                                                                                                  PARAMETERS:
                               frequency 50Hz,                                                                                                    L = 230u

                               tscale = 10                                                                                                        N = {1/9.6}
                                                                                               D3                                                 N=N2/N1, L2=(N^2)*L1
   PARAMETERS:
   tscale = 10                                                                                 Diode
                                                                                                                                                  L1                  K1
                                                                                                                                                  {L}                                      D2
   PARAMETERS:                    DB1   Rtf                                                                                                 2                   1
                                                                                                                                                                      K        V1                            VOUT
   f req = 50                   Diode                                                                                                                                 K_Linear             Diode
                                                                                                                                            1                   2     COUPLING = 1
   Vin = 100                                                                     R11                                                              L2
                                        DB4                                      360k                                                             {N*N*L}             L1 = L1
   AC_IN1                                                                                                                                                             L2 = L2

                                                                                                                                                V2
                                                                                                                                                                      0                                               C2 =
       Vin                       DB3     DB2
                                                                                                D4
                                                                                                Diode
                                                                                                                    R8
                                                                                                                    100k                                        R5                         Q1
                                                                                                                                                                                                        R2
                                                                                                                                                                                                    1.5MEG
                                                                                                                                                                                                                      200F
       FREQ = {f req*tscale}                                                                                                                                                               MOSFET
       VAMPL = {Vin*1.414}                                                                                                                                      10

                                                                       VCC                                                          R6                                        R12                             C2     {200u/tscale}
                                                                                                                                   68k
   AC_IN2                                                   R9                                         C7                                                                                                     IC = {2.51*1509.53/9.53}
                                                                                                                                                                              39k
                                               C1           3MEG                                       8p
                                               1u




                                                                                                                    POUT



                                                                                                                                          ZCD
                                                                                                                                                                                                                                     Load
                                                                                                                                                                                                                                     0.5A
                                                                                                                                                     U1




                                                                                                            VCC

                                                                                                                       COMP POUT



                                                                                                                                            ZCD
                                                                                                                                   GND
                                                                                                                                                     TB6819AFG
*Analysis directives:
                                                                                                                                                                                                                         Iload = 0.5A as
.TRAN 0 4ms 0 100n
                                                                                                                                                                     R1=9.53k and

                                                                                                            FB_IN



                                                                                                                                   MULT
.OPTIONS ABSTOL= 100n                                                                                                                                                                                                    PO=200W at




                                                                                                                                            IS
.OPTIONS GMIN= 1.0E-8                                                                                                                                                R2=1.5M                                            VO=400V
                                                           MULT
.OPTIONS ITL1= 500                                                                                                                                                   FB_IN

.OPTIONS ITL2= 200                                                                                                         COMP
.OPTIONS ITL4= 40                                                        C8        C9                       R3
                                                     R10                                     D5             10k
.OPTIONS RELTOL= 0.01                                22k               47uF      0.1uF       DZ18V                                              IS
                                                                                                                                                                     R4 100

.OPTIONS VNTOL= 100u                                         C5      IC = 17.9
                                                                                                   C3       C4                      C6 3300p                                                           R1
                                                      {10n/tscale}                       {0.47u/tscale}                                                                             R7               9.53k
                                                                                                                                                                                    0.11

                                                                                             IC = 3.74      {1u/tscale}
                                        0




                                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                                                                                                               17
Simulation of Step (1) and (2)
  200V
          VAC, in,=100V (VPEAK, in,=100*1.4142=141.4V)


    0V




 -200V
               V(AC_IN1,AC_IN2)
  420V
              VO=400Vdc with 2fline ripple

  400V



 SEL>>
  380V
               V(VOUT)
   2.8
          V(FB IN), VOVP-2, min.(2.63V), and Verr,min(2.46V)


   2.6




   2.4
         0s               5ms            10ms            15ms           20ms            25ms               30ms   35ms   40ms
               V(FB_IN)   2.63    2.46
                                                                       Time*10
Total simulation time = 270.61 seconds

                                     All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                  18
(3) L1 Inductance

The switching frequencyfs (Hz) depends on the L1 inductance and
input/output condition which the equation and the calculation data are as shown
below.
                                                      2
                         (VO  2  VAC, in, min )η  VAC, in, min
                                                
                     L1 
                              2 100  fs  VO  PO

           Output DC Voltage,                           VO                            400 V
           Minimum AC Input Voltage,                    VAC, in, min                   85 V
           Power Efficiency,                             (assumed)                    90 %
           Switching Frequency,                         fs*                            50 kHz
           Output Power,                                PO                            200 W
           Calculated Inductance,                       L1(calculated)                227 H
           Selected (Actual) Inductance,                L1(actual)                    230 H

*The fs value should be within 20kHz and 150kHz, to avoid an occurrence of EMI
problem, fs=50kHz is used.
                      All Rights Reserved Copyright (C) Bee Technologies Corporation 2012       19
(4) Input Capacitor

C1 should be capable of supplying energy stored in the L1 while the FET is on. Assumed
that the on/off duty is 50%, the C1 should be temporarily able to supply twice the current.
A current reaches its maximum at the VAC, in, min. Thus, the following relationship should
be satisfied:

                                                    2
                                        2  L1 PO
                                     C1 4
                                         VAC,in,min

                                    L1                        230 H
                                    PO                        200 W
                                    VAC, in, min                85 V
                                    C1                      0.35 F
                                    C1used                        1 F



                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2012   20
Simulation of Step (3) and (4)
                                                                            The Calculated L1 value
                               Vin, min = 85Vac with                        227H (adjusted 230H                                                  PARAMETERS:
                               frequency 50Hz,                              is used)                                                               L = 230u

                               tscale = 10                                                                                                         N = {1/9.6}
                                                                                                D3                                                 N=N2/N1, L2=(N^2)*L1
   PARAMETERS:
   tscale = 10                                                                                  Diode
                                                                                                                                                   L1
                                                                                                              I(L1)                                {L}
                                                                                                                                                                       K1
                                                                                                                                                                       K
                                                                                                                                                                                            D2
   PARAMETERS:                    DB1    Rtf                                                                                                 2                   1              V1                            VOUT
   f req = 50                   Diode                                                                                                                                  K_Linear             Diode
                                                                                                                                             1                   2     COUPLING = 1
   Vin = 85                                                                       R11                                                              L2
                                         DB4                                      360k                                                             {N*N*L}             L1 = L1
   AC_IN1                                                                                                                                                              L2 = L2

                                                                                                                                                 V2
                                                                                                                                                                       0
                                                                                                 D4                  R8                                                                                  R2
       Vin                       DB3      DB2                                                    Diode               100k                                        R5                         Q1       1.5MEG
       FREQ = {f req*tscale}                                                                                                                                                                MOSFET
       VAMPL = {Vin*1.414}                                                                                                                                       10

                                                                        VCC                                                          R6                                        R12                             C2     {200u/tscale}
                                                                                                                                    68k
   AC_IN2                                                    R9                                         C7                                                                                                     IC = {2.51*1509.53/9.53}
                                                                                                                                                                               39k
                                                C1           3MEG                                       8p
                                                1u




                                                                                                                     POUT



                                                                                                                                           ZCD
                                                                                                                                                                                                                                      Load
                                                                                                                                                                                                                                      0.5A
                                        C1 = 1F                                                                                                      U1




                                                                                                             VCC

                                                                                                                        COMP POUT



                                                                                                                                             ZCD
                                                                                                                                    GND
                                                                                                                                                      TB6819AFG
*Analysis directives:
.TRAN 0 20ms 16m 100n                                                                                                                                                                                                     Iload = 0.5A as


                                                                                                             FB_IN



                                                                                                                                    MULT
.OPTIONS ABSTOL= 100n                                                                                                                                                                                                     PO=200W at




                                                                                                                                             IS
.OPTIONS GMIN= 1.0E-8                                       MULT
                                                                                                                                                                                                                          VO=400V
.OPTIONS ITL1= 500                                                                                                                                                    FB_IN

.OPTIONS ITL2= 200                                                                                                          COMP
.OPTIONS ITL4= 40                                                         C8        C9                       R3
                                                      R10                                     D5             10k
.OPTIONS RELTOL= 0.01                                 22k               47uF      0.1uF       DZ18V                                              IS
                                                                                                                                                                      R4 100

.OPTIONS VNTOL= 100u                                          C5      IC = 17.9
                                                                                                    C3       C4                      C6 3300p                                                           R1
                                                       {10n/tscale}                       {0.47u/tscale}                                                                             R7               9.53k
                                                                                                                                                                                     0.11

                                                                                              IC = 4.22      {1u/tscale}
                                         0




                                                     All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                                                                                                               21
Simulation of Step (3) and (4)
 405V
        VO=400Vdc with high switching ripple

 400V



SEL>>
 395V
        V(VOUT)
  10A

        I(L1)

   5A




   0A
        -I(L1)
  20V
        Switching Control Signal, fs = 48.4 kHz


  10V




   0V
  16.45ms    16.46ms       16.47ms       16.48ms   16.49ms      16.50ms     16.51ms      16.52ms      16.53ms   16.54ms 16.55ms
       V(POUT)
                                                                 Time


Total simulation time = 976.83 seconds

                                All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                               22
(5) Auxiliary Winding L2

The auxiliary winding L2 is used to detect the zero inductor current condition of the inductor L1.
Since the maximum reference voltage for the ZCD comparator is 1.9V (the IC specification) ,
N1/N2 should meet the following condition:


                                                 VO  2  VAC, in, max
                                 N1/N2 
                                                       1.9

           Output DC Voltage,                               VO                            400 V
           Maximum AC Input Voltage,                        VAC, in, max                  265 V
           Calculated Turn Number Ratio,                    N1/N2                        < 14
           Selected Transformer Turn Ratio,                 N1/N2 (actual)                9.6*



Where N1 is the number of winding of turns of L1, N2 is that of L2

*To ensure that the design requirements are met, N1/N2 should preferably about 10 (9.6 is
used) to allow for design margins.

                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2012      23
Simulation of Step (5)
                               Vin, min = 265Vac with                                    N1/N2=9.6, input
                               frequency 50Hz,                                           parameter N =                                               PARAMETERS:
                                                                                                                                                     L = 230u

                               tscale = 10                                               N2/N1 = 1/9.6                                               N = {1/9.6}
                                                                                                  D3                                                 N=N2/N1, L2=(N^2)*L1
   PARAMETERS:
   tscale = 10                                                                                    Diode
                                                                                                                I(L1)                                L1
                                                                                                                                                     {L}
                                                                                                                                                                         K1
                                                                                                                                                                                              D2
   PARAMETERS:                    DB1   Rtf                                                                                                    2                   1
                                                                                                                                                                         K        V1                            VOUT
   f req = 50                   Diode                                                                                                                                    K_Linear             Diode
                                                                                                                                               1                   2     COUPLING = 1
   Vin = 265                                                                     R11                                                                 L2
                                        DB4                                      360k                                                                {N*N*L}             L1 = L1
   AC_IN1                                                                                                                                                                L2 = L2

                                                                                                                                                   V2
                                                                                                                                                                         0
                                                                                                   D4                  R8                                                                                  R2
       Vin                       DB3     DB2                                                       Diode               100k                                        R5                         Q1       1.5MEG
       FREQ = {f req*tscale}                                                                                                                                                                  MOSFET
       VAMPL = {Vin*1.414}                                                                                                                                         10

                                                                       VCC                                                             R6                                        R12                             C2     {200u/tscale}
                                                                                                                                      68k
   AC_IN2                                                   R9                                            C7                                                                                                     IC = {2.51*1509.53/9.53}
                                                                                                                                                                                 39k
                                               C1           3MEG                                          8p
                                               1u




                                                                                                                       POUT



                                                                                                                                             ZCD
                                                                                                                                                                                                                                        Load
                                                                                                                                                                                                                                        0.5A
                                                                                                                                                        U1




                                                                                                               VCC

                                                                                                                          COMP POUT



                                                                                                                                               ZCD
                                                                                                                                      GND
                                                                                                                                                        TB6819AFG
*Analysis directives:
.TRAN 0 4ms 2ms 100n                                                                                                                                                                                                        Iload = 0.5A as


                                                                                                               FB_IN



                                                                                                                                      MULT
.OPTIONS ABSTOL= 100n                                                                                                                                                                                                       PO=200W at




                                                                                                                                               IS
.OPTIONS GMIN= 1.0E-8                                      MULT
                                                                                                                                                                                                                            VO=400V
.OPTIONS ITL1= 500                                                                                                                                                      FB_IN

.OPTIONS ITL2= 200                                                                                                            COMP
.OPTIONS ITL4= 40                                                        C8        C9                          R3
                                                     R10                                        D5             10k
.OPTIONS RELTOL= 0.01                                22k               47uF      0.1uF          DZ18V                                              IS
                                                                                                                                                                        R4 100

.OPTIONS VNTOL= 100u                                         C5      IC = 17.9
                                                                                                      C3       C4                      C6 3300p                                                           R1
                                                      {10n/tscale}                          {0.47u/tscale}                                                                             R7               9.53k
                                                                                                                                                                                       0.11

                                                                                                IC = 2.533 {1u/tscale}
                                        0




                                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                                                                                                                  24
Simulation of Step (5)
  400V


    0V
         VAC, in, min=265V (VPEAK, in, min=265*1.4142=374.8V)
-400V
         V(AC_IN1,AC_IN2)
  425V


         VO=400V and PO=200W
  400V

 SEL>>
  375V
         V(VOUT)
  5.0A
          I(L1)
  2.5A


    0A
         -I(L1)
   7.5
         V(ZCD) and the maximum reference voltage of the TB6819AFG’s ZCD comparator, 1.9V
   5.0

   2.5

     0
     20ms       22ms           24ms         26ms         28ms       30ms         32ms         34ms     36ms   38ms   40ms
         V(ZCD)   1.9
                                                                   Time*10
Total simulation time = 1012.86 seconds

                                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                  25
(6) Multiplier Input Circuit (MULT)

  The AC input supply voltage (sinewave) is applied to the multiplier by dividing a full-wave
rectified voltage waveform.
  The IC startup threshold voltages of the Brown Out Protection (BOP) function = 0.75V and
the MULT linear input voltage range of the multiplier = 0 to 3V, the R9 and R10 resistor should
satisfy the following condition:

                VAC, in, min  2  R10                                     VAC, in, max  2  R10
       0.75                                           and                                        3
                       R 9  R10                                                  R9  R10

            Maximum AC Input Voltage,                      VAC, in, min                    400      V
            Maximum AC Input Voltage,                      VAC, in, max                    265      V
                                                           R9                                  3    M
                                                           R10                                 22   k
            Minimum Condition for                          BOP                          0.875       > 0.75
            Maximum Condition for                          Linear MULT                  2.728       <3

   with excel calculation sheet PFC_Cal-Sht.xlsx you can input R9 and R10 values, then check the
   calculated BOP and Linear MULT values to be within the maximum values.


                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                 26
Simulation of Step (6) at Vin, max
                               Vin, max = 265Vac with
                                                                                                                                                  PARAMETERS:
                               frequency 50Hz,                                                                                                    L = 230u

                               tscale = 10                                                                                                        N = {1/9.6}
                                                                                               D3                                                 N=N2/N1, L2=(N^2)*L1
   PARAMETERS:
   tscale = 10                                                                                 Diode
                                                                                                                                                  L1                  K1
                                                                                                                                                  {L}                                      D2
   PARAMETERS:                    DB1   Rtf                                                                                                 2                   1
                                                                                                                                                                      K        V1                            VOUT
   f req = 50                   Diode                                                                                                                                 K_Linear             Diode
                                                                                                                                            1                   2     COUPLING = 1
   Vin = 265                                                                     R11                                                              L2
                                        DB4                                      360k                                                             {N*N*L}             L1 = L1
   AC_IN1                                                                                                                                                             L2 = L2

                                                                                                                                                V2
                                                                                                                                                                      0
                                                                                                D4                  R8                                                                                  R2
       Vin                       DB3     DB2                                                    Diode               100k                                        R5                         Q1       1.5MEG
       FREQ = {f req*tscale}                                                                                                                                                               MOSFET
       VAMPL = {Vin*1.414}                                                                                                                                      10

                                                                       VCC                                                          R6                                        R12                             C2     {200u/tscale}
                                                                                                                                   68k
   AC_IN2                                                   R9                                         C7                                                                                                     IC = {2.51*1509.53/9.53}
                                                                                                                                                                              39k
                                               C1           3MEG                                       8p
                                               1u




                                                                                                                    POUT



                                                                                                                                          ZCD
                                                                                                                                                                                                                                     Load
                                                                                                                                                                                                                                     0.5A

                                                              R10=3M and                                                                            U1




                                                                                                            VCC

                                                                                                                       COMP POUT



                                                                                                                                            ZCD
                                                                                                                                   GND
                                                                                                                                                     TB6819AFG
*Analysis directives:
                                                              R11=22k                                                                                                                                                   Iload = 0.5A as
.TRAN 0 4ms 2ms 100n



                                                                                                            FB_IN



                                                                                                                                   MULT
.OPTIONS ABSTOL= 100n                                                                                                                                                                                                    PO=200W at




                                                                                                                                            IS
.OPTIONS GMIN= 1.0E-8                                      MULT
                                                                                                                                                                                                                         VO=400V
.OPTIONS ITL1= 500                                                                                                                                                   FB_IN

.OPTIONS ITL2= 200                                                                                                         COMP
.OPTIONS ITL4= 40                                                        C8        C9                       R3
                                                     R10                                     D5             10k
.OPTIONS RELTOL= 0.01                                22k               47uF      0.1uF       DZ18V                                              IS
                                                                                                                                                                     R4 100

.OPTIONS VNTOL= 100u                                         C5      IC = 17.9
                                                                                                   C3       C4                      C6 3300p                                                           R1
                                                      {10n/tscale}                       {0.47u/tscale}                                                                             R7               9.53k
                                                                                                                                                                                    0.11

                                                                                             IC = 2.533 {1u/tscale}
                                        0




                                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                                                                                                               27
Simulation of Step (6) at Vin, max
  400V

  200V

    0V
         VAC, in, max=265V (VPEAK, in, min=265*1.4142=374.8V)
 -200V
 SEL>>
 -400V
         V(AC_IN1,AC_IN2)
  400V

  300V

  200V

  100V   Full-wave rectified voltage
    0V
         V(Rtf)
   4.0

   3.0
                                                      V(MULT) < MULT linear input maximum voltage (3V)
   2.0

   1.0

     0
     20ms        22ms          24ms         26ms         28ms       30ms         32ms         34ms     36ms   38ms   40ms
         V(MULT)    3
                                                                   Time*10
Total simulation time = 1012.86 seconds

                                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                  28
Simulation of Step (6) at Vin, min
                               Vin, min = 85Vac with
                                                                                                                                                  PARAMETERS:
                               frequency 50Hz,                                                                                                    L = 230u

                               tscale = 10                                                                                                        N = {1/9.6}
                                                                                               D3                                                 N=N2/N1, L2=(N^2)*L1
   PARAMETERS:
   tscale = 10                                                                                 Diode
                                                                                                                                                  L1                  K1
                                                                                                                                                  {L}                                      D2
   PARAMETERS:                    DB1   Rtf                                                                                                 2                   1
                                                                                                                                                                      K        V1                            VOUT
   f req = 50                   Diode                                                                                                                                 K_Linear             Diode
                                                                                                                                            1                   2     COUPLING = 1
   Vin = 85                                                                      R11                                                              L2
                                        DB4                                      360k                                                             {N*N*L}             L1 = L1
   AC_IN1                                                                                                                                                             L2 = L2

                                                                                                                                                V2
                                                                                                                                                                      0
                                                                                                D4                  R8                                                                                  R2
       Vin                       DB3     DB2                                                    Diode               100k                                        R5                         Q1       1.5MEG
       FREQ = {f req*tscale}                                                                                                                                                               MOSFET
       VAMPL = {Vin*1.414}                                                                                                                                      10

                                                                       VCC                                                          R6                                        R12                             C2     {200u/tscale}
                                                                                                                                   68k
   AC_IN2                                                   R9                                         C7                                                                                                     IC = {2.51*1509.53/9.53}
                                                                                                                                                                              39k
                                               C1           3MEG                                       8p
                                               1u




                                                                                                                    POUT



                                                                                                                                          ZCD
                                                                                                                                                                                                                                     Load
                                                                                                                                                                                                                                     0.5A

                                                              R10=3M and                                                                            U1




                                                                                                            VCC

                                                                                                                       COMP POUT



                                                                                                                                            ZCD
                                                                                                                                   GND
                                                                                                                                                     TB6819AFG
*Analysis directives:
                                                              R11=22k                                                                                                                                                   Iload = 0.5A as
.TRAN 0 20ms 16m 100n



                                                                                                            FB_IN



                                                                                                                                   MULT
.OPTIONS ABSTOL= 100n                                                                                                                                                                                                    PO=200W at




                                                                                                                                            IS
.OPTIONS GMIN= 1.0E-8                                      MULT
                                                                                                                                                                                                                         VO=400V
.OPTIONS ITL1= 500                                                                                                                                                   FB_IN

.OPTIONS ITL2= 200                                                                                                         COMP
.OPTIONS ITL4= 40                                                        C8        C9                       R3
                                                     R10                                     D5             10k
.OPTIONS RELTOL= 0.01                                22k               47uF      0.1uF       DZ18V                                              IS
                                                                                                                                                                     R4 100

.OPTIONS VNTOL= 100u                                         C5      IC = 17.9
                                                                                                   C3       C4                      C6 3300p                                                           R1
                                                      {10n/tscale}                       {0.47u/tscale}                                                                             R7               9.53k
                                                                                                                                                                                    0.11

                                                                                             IC = 4.22      {1u/tscale}
                                        0




                                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                                                                                                               29
Simulation of Step (6) at Vin, min
  200V




    0V
         VAC, in, min=85V (VPEAK, in, min=85*1.4142=120.2V)

 -200V
          V(AC_IN1,AC_IN2)

  120V
         Full-wave rectified voltage

   80V


   40V
 SEL>>
    0V
          V(Rtf)
   1.0
                                                        V(MULT) > BOP threshold voltage (0.75V)

   0.5




     0
    180ms      182ms            184ms        186ms            188ms    190ms       192ms       194ms     196ms   198ms   200ms
        V(MULT)   0.75
                                                                      Time*10


Total simulation time = 976.83 seconds

                                   All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                     30
(7) Current Detection Circuit (IS)
Iq1 (power switch current) is converted into voltage by R7, then applied to the IS pin. The R7
resistor value calculation follows these steps:
  1)   The maximum current of the Q1 current, Iq1 (max) should allow the output power PO to meet
       the specification. Therefore, the following equation should be satisfied:

                                               P  100  2  2
                                    Iq1(max.) O
                                             
                                              (η  VAC,in,min  2 )
  2)   the IS pin peak voltage (Visp) is calculated using the following equation:

                                               0.65  VAC, in, min  2  R10
                                     Visp 
                                                       R9  R10
  3)   R7 = Visp / Iq1(max.).
                   Minimum ac input voltage,                    VAC, in, min              85     V
                   Output power,                                PO                      200      W
                   Power efficiency,                             (assumed)               90     %
                                                                R9                         3     M
                                                                R10                       22     k
                   Power switch current,                        Iq1(max.)              5.23      A
                   TB6819AFG IS pin peak voltage                Visp                   0.57      V
                                                                R7                     0.11      

                           All Rights Reserved Copyright (C) Bee Technologies Corporation 2012        31
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書

More Related Content

What's hot

Spicepark JAN2019 (4,953 SPICE Models)
Spicepark JAN2019 (4,953 SPICE Models)Spicepark JAN2019 (4,953 SPICE Models)
Spicepark JAN2019 (4,953 SPICE Models)Tsuyoshi Horigome
 
Update 10 models in SPICE PARK(MAR2018)
Update 10 models in SPICE PARK(MAR2018)Update 10 models in SPICE PARK(MAR2018)
Update 10 models in SPICE PARK(MAR2018)Tsuyoshi Horigome
 
Update 10 models in SPICE PARK(FEB2019)
Update 10 models in SPICE PARK(FEB2019)Update 10 models in SPICE PARK(FEB2019)
Update 10 models in SPICE PARK(FEB2019)Tsuyoshi Horigome
 
ALL SPICE Models APR2015 (4,340 Models) in SPICE PARK
ALL SPICE Models APR2015 (4,340 Models) in SPICE PARKALL SPICE Models APR2015 (4,340 Models) in SPICE PARK
ALL SPICE Models APR2015 (4,340 Models) in SPICE PARKTsuyoshi Horigome
 
2012年9月度アップデートのスパイスモデルリスト
2012年9月度アップデートのスパイスモデルリスト2012年9月度アップデートのスパイスモデルリスト
2012年9月度アップデートのスパイスモデルリストTsuyoshi Horigome
 
2012年10月度アップデートのスパイスモデルリスト
2012年10月度アップデートのスパイスモデルリスト 2012年10月度アップデートのスパイスモデルリスト
2012年10月度アップデートのスパイスモデルリスト Tsuyoshi Horigome
 
SPICE MODEL of CBS10S40 (Professional Model) in SPICE PARK
SPICE MODEL of CBS10S40 (Professional Model) in SPICE PARKSPICE MODEL of CBS10S40 (Professional Model) in SPICE PARK
SPICE MODEL of CBS10S40 (Professional Model) in SPICE PARKTsuyoshi Horigome
 
LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)
LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)
LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)Tsuyoshi Horigome
 
Spicepark JUL2019 (5,038 SPICE Models)
Spicepark JUL2019 (5,038 SPICE Models) Spicepark JUL2019 (5,038 SPICE Models)
Spicepark JUL2019 (5,038 SPICE Models) Tsuyoshi Horigome
 
Spicepark SEP2020 (5,310 SPICE Models)
Spicepark SEP2020 (5,310 SPICE Models)Spicepark SEP2020 (5,310 SPICE Models)
Spicepark SEP2020 (5,310 SPICE Models)Tsuyoshi Horigome
 
Spicepark NOV2020 (5,381 SPICE Models)
 Spicepark NOV2020 (5,381 SPICE Models)  Spicepark NOV2020 (5,381 SPICE Models)
Spicepark NOV2020 (5,381 SPICE Models) Tsuyoshi Horigome
 
Spicepark JUN2019 (5,027 SPICE Models)
Spicepark JUN2019 (5,027 SPICE Models) Spicepark JUN2019 (5,027 SPICE Models)
Spicepark JUN2019 (5,027 SPICE Models) Tsuyoshi Horigome
 
Spicepark SEP2019 (5,058 SPICE Models)
Spicepark SEP2019 (5,058 SPICE Models) Spicepark SEP2019 (5,058 SPICE Models)
Spicepark SEP2019 (5,058 SPICE Models) Tsuyoshi Horigome
 
Spicepark MAY2019 (5,006 SPICE Models)
Spicepark MAY2019 (5,006 SPICE Models)Spicepark MAY2019 (5,006 SPICE Models)
Spicepark MAY2019 (5,006 SPICE Models)Tsuyoshi Horigome
 
Spicepark DEC2018 (4,941 SPICE Models)
Spicepark DEC2018 (4,941 SPICE Models)Spicepark DEC2018 (4,941 SPICE Models)
Spicepark DEC2018 (4,941 SPICE Models)Tsuyoshi Horigome
 
Spicepark APR2019 (4,985 SPICE Models)
Spicepark APR2019 (4,985 SPICE Models)Spicepark APR2019 (4,985 SPICE Models)
Spicepark APR2019 (4,985 SPICE Models)Tsuyoshi Horigome
 
Spicepark MAR2020 (5,203 SPICE Models)
Spicepark MAR2020 (5,203 SPICE Models) Spicepark MAR2020 (5,203 SPICE Models)
Spicepark MAR2020 (5,203 SPICE Models) Tsuyoshi Horigome
 
Update 41 models(LED) in SPICE PARK(NOV2020)
Update 41 models(LED) in SPICE PARK(NOV2020) Update 41 models(LED) in SPICE PARK(NOV2020)
Update 41 models(LED) in SPICE PARK(NOV2020) Tsuyoshi Horigome
 
Spicepark FEB2019 (4,963 SPICE Models)
Spicepark FEB2019 (4,963 SPICE Models)Spicepark FEB2019 (4,963 SPICE Models)
Spicepark FEB2019 (4,963 SPICE Models)Tsuyoshi Horigome
 

What's hot (20)

Spicepark JAN2019 (4,953 SPICE Models)
Spicepark JAN2019 (4,953 SPICE Models)Spicepark JAN2019 (4,953 SPICE Models)
Spicepark JAN2019 (4,953 SPICE Models)
 
Update 10 models in SPICE PARK(MAR2018)
Update 10 models in SPICE PARK(MAR2018)Update 10 models in SPICE PARK(MAR2018)
Update 10 models in SPICE PARK(MAR2018)
 
Update 10 models in SPICE PARK(FEB2019)
Update 10 models in SPICE PARK(FEB2019)Update 10 models in SPICE PARK(FEB2019)
Update 10 models in SPICE PARK(FEB2019)
 
ALL SPICE Models APR2015 (4,340 Models) in SPICE PARK
ALL SPICE Models APR2015 (4,340 Models) in SPICE PARKALL SPICE Models APR2015 (4,340 Models) in SPICE PARK
ALL SPICE Models APR2015 (4,340 Models) in SPICE PARK
 
2012年9月度アップデートのスパイスモデルリスト
2012年9月度アップデートのスパイスモデルリスト2012年9月度アップデートのスパイスモデルリスト
2012年9月度アップデートのスパイスモデルリスト
 
2012年10月度アップデートのスパイスモデルリスト
2012年10月度アップデートのスパイスモデルリスト 2012年10月度アップデートのスパイスモデルリスト
2012年10月度アップデートのスパイスモデルリスト
 
Circuit Design using TI
Circuit Design using TICircuit Design using TI
Circuit Design using TI
 
SPICE MODEL of CBS10S40 (Professional Model) in SPICE PARK
SPICE MODEL of CBS10S40 (Professional Model) in SPICE PARKSPICE MODEL of CBS10S40 (Professional Model) in SPICE PARK
SPICE MODEL of CBS10S40 (Professional Model) in SPICE PARK
 
LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)
LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)
LED電源回路アプリケーションガイド 浜松プレゼン資料(浜松プレゼン)
 
Spicepark JUL2019 (5,038 SPICE Models)
Spicepark JUL2019 (5,038 SPICE Models) Spicepark JUL2019 (5,038 SPICE Models)
Spicepark JUL2019 (5,038 SPICE Models)
 
Spicepark SEP2020 (5,310 SPICE Models)
Spicepark SEP2020 (5,310 SPICE Models)Spicepark SEP2020 (5,310 SPICE Models)
Spicepark SEP2020 (5,310 SPICE Models)
 
Spicepark NOV2020 (5,381 SPICE Models)
 Spicepark NOV2020 (5,381 SPICE Models)  Spicepark NOV2020 (5,381 SPICE Models)
Spicepark NOV2020 (5,381 SPICE Models)
 
Spicepark JUN2019 (5,027 SPICE Models)
Spicepark JUN2019 (5,027 SPICE Models) Spicepark JUN2019 (5,027 SPICE Models)
Spicepark JUN2019 (5,027 SPICE Models)
 
Spicepark SEP2019 (5,058 SPICE Models)
Spicepark SEP2019 (5,058 SPICE Models) Spicepark SEP2019 (5,058 SPICE Models)
Spicepark SEP2019 (5,058 SPICE Models)
 
Spicepark MAY2019 (5,006 SPICE Models)
Spicepark MAY2019 (5,006 SPICE Models)Spicepark MAY2019 (5,006 SPICE Models)
Spicepark MAY2019 (5,006 SPICE Models)
 
Spicepark DEC2018 (4,941 SPICE Models)
Spicepark DEC2018 (4,941 SPICE Models)Spicepark DEC2018 (4,941 SPICE Models)
Spicepark DEC2018 (4,941 SPICE Models)
 
Spicepark APR2019 (4,985 SPICE Models)
Spicepark APR2019 (4,985 SPICE Models)Spicepark APR2019 (4,985 SPICE Models)
Spicepark APR2019 (4,985 SPICE Models)
 
Spicepark MAR2020 (5,203 SPICE Models)
Spicepark MAR2020 (5,203 SPICE Models) Spicepark MAR2020 (5,203 SPICE Models)
Spicepark MAR2020 (5,203 SPICE Models)
 
Update 41 models(LED) in SPICE PARK(NOV2020)
Update 41 models(LED) in SPICE PARK(NOV2020) Update 41 models(LED) in SPICE PARK(NOV2020)
Update 41 models(LED) in SPICE PARK(NOV2020)
 
Spicepark FEB2019 (4,963 SPICE Models)
Spicepark FEB2019 (4,963 SPICE Models)Spicepark FEB2019 (4,963 SPICE Models)
Spicepark FEB2019 (4,963 SPICE Models)
 

Similar to 電流臨界モード方式PFC制御回路の解説書

電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書spicepark
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitTsuyoshi Horigome
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitTsuyoshi Horigome
 
Evaluation Report of TL431BILP
Evaluation Report of TL431BILPEvaluation Report of TL431BILP
Evaluation Report of TL431BILPTsuyoshi Horigome
 
Multi-KilowattFlybackConverters.pptx
Multi-KilowattFlybackConverters.pptxMulti-KilowattFlybackConverters.pptx
Multi-KilowattFlybackConverters.pptxRickMaity
 
SPICE MODEL of AN1431T in SPICE PARK
SPICE MODEL of AN1431T in SPICE PARKSPICE MODEL of AN1431T in SPICE PARK
SPICE MODEL of AN1431T in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of NJM2887 in SPICE PARK
SPICE MODEL of NJM2887 in SPICE PARKSPICE MODEL of NJM2887 in SPICE PARK
SPICE MODEL of NJM2887 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of uPC24A12HF in SPICE PARK
SPICE MODEL of uPC24A12HF in SPICE PARKSPICE MODEL of uPC24A12HF in SPICE PARK
SPICE MODEL of uPC24A12HF in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of NJM2887 in SPICE PARK
SPICE MODEL of NJM2887 in SPICE PARKSPICE MODEL of NJM2887 in SPICE PARK
SPICE MODEL of NJM2887 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of TN41B in SPICE PARK
SPICE MODEL of TN41B in SPICE PARKSPICE MODEL of TN41B in SPICE PARK
SPICE MODEL of TN41B in SPICE PARKTsuyoshi Horigome
 
FL7701 APEC Demo Performance_SMappus 01192012
FL7701 APEC Demo Performance_SMappus 01192012FL7701 APEC Demo Performance_SMappus 01192012
FL7701 APEC Demo Performance_SMappus 01192012Steve Mappus
 
SPICE MODEL of uPC78L10J in SPICE PARK
SPICE MODEL of uPC78L10J in SPICE PARKSPICE MODEL of uPC78L10J in SPICE PARK
SPICE MODEL of uPC78L10J in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of uPC78L08J in SPICE PARK
SPICE MODEL of uPC78L08J in SPICE PARKSPICE MODEL of uPC78L08J in SPICE PARK
SPICE MODEL of uPC78L08J in SPICE PARKTsuyoshi Horigome
 
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)Sarah Krystelle
 
SPICE MODEL of uPC78L08T in SPICE PARK
SPICE MODEL of uPC78L08T in SPICE PARKSPICE MODEL of uPC78L08T in SPICE PARK
SPICE MODEL of uPC78L08T in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of uPC78L07T in SPICE PARK
SPICE MODEL of uPC78L07T in SPICE PARKSPICE MODEL of uPC78L07T in SPICE PARK
SPICE MODEL of uPC78L07T in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of uPC78N08H in SPICE PARK
SPICE MODEL of uPC78N08H in SPICE PARKSPICE MODEL of uPC78N08H in SPICE PARK
SPICE MODEL of uPC78N08H in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of uPC78L07J in SPICE PARK
SPICE MODEL of uPC78L07J in SPICE PARKSPICE MODEL of uPC78L07J in SPICE PARK
SPICE MODEL of uPC78L07J in SPICE PARKTsuyoshi Horigome
 
XLSEMI XL140 2A 380KHz 18V Buck DC to DC Converter
XLSEMI XL140 2A 380KHz 18V Buck DC to DC ConverterXLSEMI XL140 2A 380KHz 18V Buck DC to DC Converter
XLSEMI XL140 2A 380KHz 18V Buck DC to DC Converterdegarden
 

Similar to 電流臨界モード方式PFC制御回路の解説書 (20)

電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
Evaluation Report of TL431BILP
Evaluation Report of TL431BILPEvaluation Report of TL431BILP
Evaluation Report of TL431BILP
 
Multi-KilowattFlybackConverters.pptx
Multi-KilowattFlybackConverters.pptxMulti-KilowattFlybackConverters.pptx
Multi-KilowattFlybackConverters.pptx
 
SPICE MODEL of AN1431T in SPICE PARK
SPICE MODEL of AN1431T in SPICE PARKSPICE MODEL of AN1431T in SPICE PARK
SPICE MODEL of AN1431T in SPICE PARK
 
SPICE MODEL of NJM2887 in SPICE PARK
SPICE MODEL of NJM2887 in SPICE PARKSPICE MODEL of NJM2887 in SPICE PARK
SPICE MODEL of NJM2887 in SPICE PARK
 
SPICE MODEL of uPC24A12HF in SPICE PARK
SPICE MODEL of uPC24A12HF in SPICE PARKSPICE MODEL of uPC24A12HF in SPICE PARK
SPICE MODEL of uPC24A12HF in SPICE PARK
 
SPICE MODEL of NJM2887 in SPICE PARK
SPICE MODEL of NJM2887 in SPICE PARKSPICE MODEL of NJM2887 in SPICE PARK
SPICE MODEL of NJM2887 in SPICE PARK
 
SPICE MODEL of TN41B in SPICE PARK
SPICE MODEL of TN41B in SPICE PARKSPICE MODEL of TN41B in SPICE PARK
SPICE MODEL of TN41B in SPICE PARK
 
FL7701 APEC Demo Performance_SMappus 01192012
FL7701 APEC Demo Performance_SMappus 01192012FL7701 APEC Demo Performance_SMappus 01192012
FL7701 APEC Demo Performance_SMappus 01192012
 
Td1410
Td1410Td1410
Td1410
 
SPICE MODEL of uPC78L10J in SPICE PARK
SPICE MODEL of uPC78L10J in SPICE PARKSPICE MODEL of uPC78L10J in SPICE PARK
SPICE MODEL of uPC78L10J in SPICE PARK
 
SPICE MODEL of uPC78L08J in SPICE PARK
SPICE MODEL of uPC78L08J in SPICE PARKSPICE MODEL of uPC78L08J in SPICE PARK
SPICE MODEL of uPC78L08J in SPICE PARK
 
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
 
SPICE MODEL of uPC78L08T in SPICE PARK
SPICE MODEL of uPC78L08T in SPICE PARKSPICE MODEL of uPC78L08T in SPICE PARK
SPICE MODEL of uPC78L08T in SPICE PARK
 
SPICE MODEL of uPC78L07T in SPICE PARK
SPICE MODEL of uPC78L07T in SPICE PARKSPICE MODEL of uPC78L07T in SPICE PARK
SPICE MODEL of uPC78L07T in SPICE PARK
 
SPICE MODEL of uPC78N08H in SPICE PARK
SPICE MODEL of uPC78N08H in SPICE PARKSPICE MODEL of uPC78N08H in SPICE PARK
SPICE MODEL of uPC78N08H in SPICE PARK
 
SPICE MODEL of uPC78L07J in SPICE PARK
SPICE MODEL of uPC78L07J in SPICE PARKSPICE MODEL of uPC78L07J in SPICE PARK
SPICE MODEL of uPC78L07J in SPICE PARK
 
XLSEMI XL140 2A 380KHz 18V Buck DC to DC Converter
XLSEMI XL140 2A 380KHz 18V Buck DC to DC ConverterXLSEMI XL140 2A 380KHz 18V Buck DC to DC Converter
XLSEMI XL140 2A 380KHz 18V Buck DC to DC Converter
 

More from Tsuyoshi Horigome

Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspiceTsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is ErrorTsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintTsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsTsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hiresTsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)Tsuyoshi Horigome
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモTsuyoshi Horigome
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?Tsuyoshi Horigome
 
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)Tsuyoshi Horigome
 
SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)Tsuyoshi Horigome
 

More from Tsuyoshi Horigome (20)

Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?
 
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
 
SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)
 

Recently uploaded

DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...Rishabh Aryan
 
The spirit of digital place - game worlds and architectural phenomenology
The spirit of digital place - game worlds and architectural phenomenologyThe spirit of digital place - game worlds and architectural phenomenology
The spirit of digital place - game worlds and architectural phenomenologyChristopher Totten
 
CAPITAL GATE CASE STUDY -regional case study.pdf
CAPITAL GATE CASE STUDY -regional case study.pdfCAPITAL GATE CASE STUDY -regional case study.pdf
CAPITAL GATE CASE STUDY -regional case study.pdfAlasAlthaher
 
Unit1_Syllbwbnwnwneneneneneneentation_Sem2.pptx
Unit1_Syllbwbnwnwneneneneneneentation_Sem2.pptxUnit1_Syllbwbnwnwneneneneneneentation_Sem2.pptx
Unit1_Syllbwbnwnwneneneneneneentation_Sem2.pptxNitish292041
 
Map of St. Louis Parks
Map of St. Louis Parks                              Map of St. Louis Parks
Map of St. Louis Parks CharlottePulte
 
Niintendo Wii Presentation Template.pptx
Niintendo Wii Presentation Template.pptxNiintendo Wii Presentation Template.pptx
Niintendo Wii Presentation Template.pptxKevinYaelJimnezSanti
 
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.pptMaking and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.pptJIT KUMAR GUPTA
 
simpson-lee_house_dt20ajshsjsjsjsjj15.pdf
simpson-lee_house_dt20ajshsjsjsjsjj15.pdfsimpson-lee_house_dt20ajshsjsjsjsjj15.pdf
simpson-lee_house_dt20ajshsjsjsjsjj15.pdfLucyBonelli
 
Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Rndexperts
 
Karim apartment ideas 02 ppppppppppppppp
Karim apartment ideas 02 pppppppppppppppKarim apartment ideas 02 ppppppppppppppp
Karim apartment ideas 02 pppppppppppppppNadaMohammed714321
 
General Simple Guide About AI in Design By: A.L. Samar Hossam ElDin
General Simple Guide About AI in Design By: A.L. Samar Hossam ElDinGeneral Simple Guide About AI in Design By: A.L. Samar Hossam ElDin
General Simple Guide About AI in Design By: A.L. Samar Hossam ElDinSamar Hossam ElDin Ahmed
 
AI and Design Vol. 2: Navigating the New Frontier - Morgenbooster
AI and Design Vol. 2: Navigating the New Frontier - MorgenboosterAI and Design Vol. 2: Navigating the New Frontier - Morgenbooster
AI and Design Vol. 2: Navigating the New Frontier - Morgenbooster1508 A/S
 
NBA power point presentation final copy y
NBA power point presentation final copy yNBA power point presentation final copy y
NBA power point presentation final copy ysrajece
 
Piece by Piece Magazine
Piece by Piece Magazine                      Piece by Piece Magazine
Piece by Piece Magazine CharlottePulte
 
Interior Design for Office a cura di RMG Project Studio
Interior Design for Office a cura di RMG Project StudioInterior Design for Office a cura di RMG Project Studio
Interior Design for Office a cura di RMG Project StudioRMG Project Studio
 
10 Best WordPress Plugins to make the website effective in 2024
10 Best WordPress Plugins to make the website effective in 202410 Best WordPress Plugins to make the website effective in 2024
10 Best WordPress Plugins to make the website effective in 2024digital learning point
 
Karim apartment ideas 01 ppppppppppppppp
Karim apartment ideas 01 pppppppppppppppKarim apartment ideas 01 ppppppppppppppp
Karim apartment ideas 01 pppppppppppppppNadaMohammed714321
 
guest bathroom white and blue ssssssssss
guest bathroom white and blue ssssssssssguest bathroom white and blue ssssssssss
guest bathroom white and blue ssssssssssNadaMohammed714321
 
FW25-26 Knit Cut & Sew Trend Book Peclers Paris
FW25-26 Knit Cut & Sew Trend Book Peclers ParisFW25-26 Knit Cut & Sew Trend Book Peclers Paris
FW25-26 Knit Cut & Sew Trend Book Peclers ParisPeclers Paris
 
world health day 2024.pptxgbbvggvbhjjjbbbb
world health day 2024.pptxgbbvggvbhjjjbbbbworld health day 2024.pptxgbbvggvbhjjjbbbb
world health day 2024.pptxgbbvggvbhjjjbbbbpreetirao780
 

Recently uploaded (20)

DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
 
The spirit of digital place - game worlds and architectural phenomenology
The spirit of digital place - game worlds and architectural phenomenologyThe spirit of digital place - game worlds and architectural phenomenology
The spirit of digital place - game worlds and architectural phenomenology
 
CAPITAL GATE CASE STUDY -regional case study.pdf
CAPITAL GATE CASE STUDY -regional case study.pdfCAPITAL GATE CASE STUDY -regional case study.pdf
CAPITAL GATE CASE STUDY -regional case study.pdf
 
Unit1_Syllbwbnwnwneneneneneneentation_Sem2.pptx
Unit1_Syllbwbnwnwneneneneneneentation_Sem2.pptxUnit1_Syllbwbnwnwneneneneneneentation_Sem2.pptx
Unit1_Syllbwbnwnwneneneneneneentation_Sem2.pptx
 
Map of St. Louis Parks
Map of St. Louis Parks                              Map of St. Louis Parks
Map of St. Louis Parks
 
Niintendo Wii Presentation Template.pptx
Niintendo Wii Presentation Template.pptxNiintendo Wii Presentation Template.pptx
Niintendo Wii Presentation Template.pptx
 
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.pptMaking and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
 
simpson-lee_house_dt20ajshsjsjsjsjj15.pdf
simpson-lee_house_dt20ajshsjsjsjsjj15.pdfsimpson-lee_house_dt20ajshsjsjsjsjj15.pdf
simpson-lee_house_dt20ajshsjsjsjsjj15.pdf
 
Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025
 
Karim apartment ideas 02 ppppppppppppppp
Karim apartment ideas 02 pppppppppppppppKarim apartment ideas 02 ppppppppppppppp
Karim apartment ideas 02 ppppppppppppppp
 
General Simple Guide About AI in Design By: A.L. Samar Hossam ElDin
General Simple Guide About AI in Design By: A.L. Samar Hossam ElDinGeneral Simple Guide About AI in Design By: A.L. Samar Hossam ElDin
General Simple Guide About AI in Design By: A.L. Samar Hossam ElDin
 
AI and Design Vol. 2: Navigating the New Frontier - Morgenbooster
AI and Design Vol. 2: Navigating the New Frontier - MorgenboosterAI and Design Vol. 2: Navigating the New Frontier - Morgenbooster
AI and Design Vol. 2: Navigating the New Frontier - Morgenbooster
 
NBA power point presentation final copy y
NBA power point presentation final copy yNBA power point presentation final copy y
NBA power point presentation final copy y
 
Piece by Piece Magazine
Piece by Piece Magazine                      Piece by Piece Magazine
Piece by Piece Magazine
 
Interior Design for Office a cura di RMG Project Studio
Interior Design for Office a cura di RMG Project StudioInterior Design for Office a cura di RMG Project Studio
Interior Design for Office a cura di RMG Project Studio
 
10 Best WordPress Plugins to make the website effective in 2024
10 Best WordPress Plugins to make the website effective in 202410 Best WordPress Plugins to make the website effective in 2024
10 Best WordPress Plugins to make the website effective in 2024
 
Karim apartment ideas 01 ppppppppppppppp
Karim apartment ideas 01 pppppppppppppppKarim apartment ideas 01 ppppppppppppppp
Karim apartment ideas 01 ppppppppppppppp
 
guest bathroom white and blue ssssssssss
guest bathroom white and blue ssssssssssguest bathroom white and blue ssssssssss
guest bathroom white and blue ssssssssss
 
FW25-26 Knit Cut & Sew Trend Book Peclers Paris
FW25-26 Knit Cut & Sew Trend Book Peclers ParisFW25-26 Knit Cut & Sew Trend Book Peclers Paris
FW25-26 Knit Cut & Sew Trend Book Peclers Paris
 
world health day 2024.pptxgbbvggvbhjjjbbbb
world health day 2024.pptxgbbvggvbhjjjbbbbworld health day 2024.pptxgbbvggvbhjjjbbbb
world health day 2024.pptxgbbvggvbhjjjbbbb
 

電流臨界モード方式PFC制御回路の解説書

  • 1. Rectifiers PFC D2 2 1 L1 PARAMETERS: Diode 1 2 f req = 50Hz L2 Vin = 100Vac 0 Q1 MOSFET C1 TB6819AFG C2 ILoad Vac, in 1uF Controller 200u 0.5A Circuit R7 0 Design KIT: Critical Conduction Mode (CRM) PFC Circuit All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1
  • 2. Contents • Introduction • Application Circuit • Design Specification • Time Scaling • Application Circuit with Time Scaling (tscale =10) • Common Mode Choke Coil for PFC • Design Steps (1-8) • Switching Devices VPEAK and IPEAK at Steady State • Switching Devices VPEAK and IPEAK at Start Up Appendix A.Excel Calculation Sheet B.Simulation Index All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 2
  • 3. Introduction PARAMETERS: bulk Vbulk DB1 f req = 50Hz Diode Vin = 100Vac Iline DB4 AC_IN1 Vin Load Cbulk 1.414Adc 2000uF DB3 DB2 AC_IN2 0 Most electronic ballasts and switching power supplies use a bridge rectifier and a bulk storage capacitor to derive raw dc voltage from the utility ac line, figure above: Vin=100Vac, 50Hz and PO=200W. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 3
  • 4. Introduction 200V |VAC, in, 100V| (VPEAK, in=100*2=141.42V) and Vbulk 100V SEL>> 0V ABS( V(AC_IN1,AC_IN2) ) V(bulk) 20A |Iline| 10A 0A ABS( I(Vin) ) 1.0 0.8 Power Factor Ratio = Pin, avg./(Vin, rms* Iin, rms) 0.6 0.4 0.2 0 160ms 164ms 168ms 172ms 176ms 180ms 184ms 188ms 192ms 196ms 200ms AVG(ABS(W(Vin)))/(RMS(ABS(V(AC_IN1,AC_IN2)))*RMS(ABS(I(Vin)))) Time The Uncorrected Power Factor rectifying circuit draws current from the ac line when the ac voltage exceeds the capacitor voltage (Vbulk). The current (Iline) is non- sinusoidal. This results in a poor power factor condition where the apparent input power is much higher than the real power, figure above, power factor ratios of 0.5 to 0.7 are common. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 4
  • 5. Introduction Rectifiers PFC D2 VDC, OUT 2 1 L1 PARAMETERS: Diode 1 2 f req = 50Hz L2 Vin = 100Vac 0 Iline Q1 MOSFET C1 TB6819AFG C2 ILoad Vac, in 1uF Controller 200u 0.5A Circuit R7 0 The Power Factor Correction (PFC) circuit, as an off-line active preconverter, is designed to draw a sinusoidal current from the AC line that is in phase with input voltage. As a result, the power factor ratio is improved to be near to ideal (1). The TB6819AFG is a critical conduction mode (CRM) PFC controller IC. The description including equation and constants as a guide to understand its designing process is included in this document. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 5
  • 6. Introduction 160V 600V 1 2 VAC, in, 100V and VDC, OUT, 400V 0V 400V >> -160V 200V 1 V(AC_IN1,AC_IN2) 2 V(VOUT) 8.0A Iline 0A SEL>> -8.0A -I(Vin) 1.0 0.8 0.6 Power Factor Ratio = 0.85 0.4 0.2 *simulation result at tscale = 10 0 100ms 104ms 108ms 112ms 116ms 120ms 124ms 128ms 132ms 136ms 140ms AVG(ABS(W(Vin))) / (RMS(ABS(V(AC_IN1,AC_IN2)))*RMS(ABS(I(Vin)))) Time*10 The poor power factor load is corrected by keeping the ac line current sinusoidal and in phase with the line voltage. This results with power factor ratio is 0.85. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 6
  • 7. Application Circuit PARAMETERS: L = 230u N = {1/9.6} D3 N=N2/N1, L2=(N^2)*L1 PO = 200W, Diode L1 K1 VDC, OUT = 400VDC {L} D2 PARAMETERS: DB1 Rtf 2 1 K V1 VOUT f req = 50 Diode K_Linear Diode 1 2 COUPLING = 1 Vin = 100 R11 L2 DB4 360k {N*N*L} L1 = L1 AC_IN1 L2 = L2 V2 0 D4 R8 R2 Vin DB3 DB2 Diode 100k R5 Q1 1.5MEG FREQ = {f req} MOSFET VAMPL = {Vin*1.414} 10 VCC R6 R12 C2 200uF 68k AC_IN2 R9 C7 IC = {2.51*1509.53/9.53} 39k C1 3MEG 8p VAC, in=85-265VAC 1u POUT ZCD Load 0.5A U1 VCC COMP POUT ZCD GND TB6819AFG *Analysis directives: FB_IN MULT .TRAN 0 20ms 0 100n IS .OPTIONS ABSTOL= 100n MULT .OPTIONS GMIN= 1.0E-8 FB_IN .OPTIONS ITL1= 500 COMP .OPTIONS ITL2= 200 C8 C9 R3 .OPTIONS ITL4= 40 R10 22k 47uF 0.1uF D5 DZ18V 10k IS R4 100 .OPTIONS RELTOL= 0.01 C5 IC = 17.9 C6 3300p C3 C4 R1 .OPTIONS VNTOL= 100u 10nF 0.47uF R7 9.53k 1uF 0.11 IC = 3.74 0 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 7
  • 8. Application Circuit 200V 420V 1 2 VAC, in, 100V and VDC, OUT, 400V 0V 400V >> -200V 380V 1 V(AC_IN1,AC_IN2) 2 V(VOUT) 10A Iline 0A SEL>> -10A 0s 2ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms 18ms 20ms -I(Vin) Time 1.0 Power Factor Ratio = 0.85 0.5 0 10ms 11ms 12ms 13ms 14ms 15ms 16ms 17ms 18ms 19ms 20ms AVG(ABS(W(Vin)))/(RMS(ABS(V(AC_IN1,AC_IN2)))*RMS(ABS(I(Vin)))) Time Total simulation time = 1429.49 seconds All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 8
  • 9. Design Specification This application circuit is for 400VDC/200W output Critical Conduction Mode (CRM) PFC Circuit : • VAC, in,min = 85 (VAC) • VAC, in,max = 265 (VAC) • VO = 400 (VDC) • Po = 200 (W) • fs = 20kHz ~ 150kHz, 50kHz •  (assumed) = 90% Control IC : • Part # TTB6819AFG (PFC Controller IC) • Switching Technique: Critical Conduction Mode (CRM) All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 9
  • 10. Time Scaling The transient (cycle-by-cycle) simulation of PFC circuits is really time (and memory) consuming exercise, even with a fast computer. There is a way to speed up simulations by artificially altering some of the key element values by using of time scaling ratio (tscale), passed as a parameter to the simulation engine: • F line = F line  tscale • C 2 = C 2  tscale • C 3 = C 3  tscale • C 4 = C 4  tscale • C 5 = C 5  tscale All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 10
  • 11. Application Circuit with Time Scaling (tscale =10) PARAMETERS: L = 230u N = {1/9.6} D3 N=N2/N1, L2=(N^2)*L1 PARAMETERS: PO = 200W, tscale = 10 Diode L1 K1 VDC, OUT = 400VDC {L} D2 PARAMETERS: DB1 Rtf 2 1 K V1 VOUT f req = 50 Diode K_Linear Diode 1 2 COUPLING = 1 Vin = 100 R11 L2 DB4 360k {N*N*L} L1 = L1 AC_IN1 L2 = L2 V2 0 D4 R8 R2 Vin DB3 DB2 Diode 100k R5 Q1 1.5MEG FREQ = {f req*tscale} MOSFET VAMPL = {Vin*1.414} 10 VCC R6 R12 C2 {200u/tscale} 68k AC_IN2 R9 C7 IC = {2.51*1509.53/9.53} 39k C1 3MEG 8p VAC, in=85-265VAC 1u POUT ZCD Load 0.5A U1 VCC COMP POUT ZCD GND TB6819AFG *Analysis directives: FB_IN MULT .TRAN 0 2ms 0 100n IS .OPTIONS ABSTOL= 100n MULT .OPTIONS GMIN= 1.0E-8 FB_IN .OPTIONS ITL1= 500 COMP .OPTIONS ITL2= 200 C8 C9 R3 .OPTIONS ITL4= 40 R10 22k 47uF 0.1uF D5 DZ18V 10k IS R4 100 .OPTIONS RELTOL= 0.01 C5 IC = 17.9 C6 3300p C3 C4 R1 .OPTIONS VNTOL= 100u {10n/tscale} {0.47u/tscale} R7 9.53k 0.11 IC = 3.74 {1u/tscale} 0 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 11
  • 12. Application Circuit with Time Scaling (tscale =10) 200V 420V 1 2 VAC, in, 100V and VDC, OUT, 400V 0V 400V >> -200V 380V 1 V(AC_IN1,AC_IN2) 2 V(VOUT) 10A Iline 0A SEL>> -10A 0s 2ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms 18ms 20ms -I(Vin) Time*10 1.0 Power Factor Ratio = 0.85 0.5 0 10ms 11ms 12ms 13ms 14ms 15ms 16ms 17ms 18ms 19ms 20ms AVG(ABS(W(Vin)))/(RMS(ABS(V(AC_IN1,AC_IN2)))*RMS(ABS(I(Vin)))) Time*10 Total simulation time = 132.41 seconds All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 12
  • 13. Common Mode Choke Coil for PFC PARAMETERS: To model a simple common mode choke coil, the L = 230u SPICE primitive k, which describes the coupling ratio between L1 and L2, can be used. N = {1/9.6} N=N2/N1, L2=(N^2)*L1 COUPLING=1 of K_Linear means there is no leakage inductance in the common mode choke coil model. L1 K1 {L} 2 1 K N is a ratio of L2 turns and L1 turns, or N2/N1 K_Linear 1 2 COUPLING = 1 L2 Input the parameters: L as an L1 inductance value L1 = L1 {N*N*L} and N, then L2 is calculated using equation: L2 = L2 = L2 N2L1 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 13
  • 14. Design Steps (1-8) (1) Output Voltage and Feedback Circuit (2) Output Capacitor (3) L1 Inductance (4) Input Capacitor (5) Auxiliary Winding L2 (6) Multiplier Input Circuit (MULT) (7) Current Detection Circuit (IS) (8) Zero Current Detection Circuit (ZCD) All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 14
  • 15. (1) Output Voltage and Feedback Circuit The output voltage is resistively divided and applied to the error amplifier, to set the V O the R1 and R2 resistor value should satisfy the following equation : VO  R1  2.51 R1  R 2 Output DC Voltage, VO 400 V Error Amplifier Reference Voltage Verr 2.51 V R2 1.5 M R1 9.47 k R1 (actual) 9.53* k *With VO=400V and R2=1.5M, R1 is calculated to be 9.47k, however a resistor of 9.53k , which is available in the E96 series, is used as R1 (actual). All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 15
  • 16. (2) Output Capacitor The output capacitance C2 is determined so that the PFC output ripple voltage dose not exceed the VOPV-2, for the capacitor selection, the following equation should be satisfied: PO C2  2  2f in  VO  VOVP-2 /Verr  - 1 2 PO 200 W fin 50 Hz VO 400 V VOVP-2, min 2.63 V Verr, min 2.46 V C2  41 F C2used 200 F The value of VOVP-2, min and Verr, min are inform in the TB6819AFG datasheet. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 16
  • 17. Simulation of Step (1) and (2) Vin = 100Vac with PARAMETERS: frequency 50Hz, L = 230u tscale = 10 N = {1/9.6} D3 N=N2/N1, L2=(N^2)*L1 PARAMETERS: tscale = 10 Diode L1 K1 {L} D2 PARAMETERS: DB1 Rtf 2 1 K V1 VOUT f req = 50 Diode K_Linear Diode 1 2 COUPLING = 1 Vin = 100 R11 L2 DB4 360k {N*N*L} L1 = L1 AC_IN1 L2 = L2 V2 0 C2 = Vin DB3 DB2 D4 Diode R8 100k R5 Q1 R2 1.5MEG 200F FREQ = {f req*tscale} MOSFET VAMPL = {Vin*1.414} 10 VCC R6 R12 C2 {200u/tscale} 68k AC_IN2 R9 C7 IC = {2.51*1509.53/9.53} 39k C1 3MEG 8p 1u POUT ZCD Load 0.5A U1 VCC COMP POUT ZCD GND TB6819AFG *Analysis directives: Iload = 0.5A as .TRAN 0 4ms 0 100n R1=9.53k and FB_IN MULT .OPTIONS ABSTOL= 100n PO=200W at IS .OPTIONS GMIN= 1.0E-8 R2=1.5M VO=400V MULT .OPTIONS ITL1= 500 FB_IN .OPTIONS ITL2= 200 COMP .OPTIONS ITL4= 40 C8 C9 R3 R10 D5 10k .OPTIONS RELTOL= 0.01 22k 47uF 0.1uF DZ18V IS R4 100 .OPTIONS VNTOL= 100u C5 IC = 17.9 C3 C4 C6 3300p R1 {10n/tscale} {0.47u/tscale} R7 9.53k 0.11 IC = 3.74 {1u/tscale} 0 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 17
  • 18. Simulation of Step (1) and (2) 200V VAC, in,=100V (VPEAK, in,=100*1.4142=141.4V) 0V -200V V(AC_IN1,AC_IN2) 420V VO=400Vdc with 2fline ripple 400V SEL>> 380V V(VOUT) 2.8 V(FB IN), VOVP-2, min.(2.63V), and Verr,min(2.46V) 2.6 2.4 0s 5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms V(FB_IN) 2.63 2.46 Time*10 Total simulation time = 270.61 seconds All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 18
  • 19. (3) L1 Inductance The switching frequencyfs (Hz) depends on the L1 inductance and input/output condition which the equation and the calculation data are as shown below. 2 (VO  2  VAC, in, min )η  VAC, in, min  L1  2 100  fs  VO  PO Output DC Voltage, VO 400 V Minimum AC Input Voltage, VAC, in, min 85 V Power Efficiency,  (assumed) 90 % Switching Frequency, fs* 50 kHz Output Power, PO 200 W Calculated Inductance, L1(calculated) 227 H Selected (Actual) Inductance, L1(actual) 230 H *The fs value should be within 20kHz and 150kHz, to avoid an occurrence of EMI problem, fs=50kHz is used. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 19
  • 20. (4) Input Capacitor C1 should be capable of supplying energy stored in the L1 while the FET is on. Assumed that the on/off duty is 50%, the C1 should be temporarily able to supply twice the current. A current reaches its maximum at the VAC, in, min. Thus, the following relationship should be satisfied: 2 2  L1 PO C1 4 VAC,in,min L1 230 H PO 200 W VAC, in, min 85 V C1  0.35 F C1used 1 F All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 20
  • 21. Simulation of Step (3) and (4) The Calculated L1 value Vin, min = 85Vac with 227H (adjusted 230H PARAMETERS: frequency 50Hz, is used) L = 230u tscale = 10 N = {1/9.6} D3 N=N2/N1, L2=(N^2)*L1 PARAMETERS: tscale = 10 Diode L1 I(L1) {L} K1 K D2 PARAMETERS: DB1 Rtf 2 1 V1 VOUT f req = 50 Diode K_Linear Diode 1 2 COUPLING = 1 Vin = 85 R11 L2 DB4 360k {N*N*L} L1 = L1 AC_IN1 L2 = L2 V2 0 D4 R8 R2 Vin DB3 DB2 Diode 100k R5 Q1 1.5MEG FREQ = {f req*tscale} MOSFET VAMPL = {Vin*1.414} 10 VCC R6 R12 C2 {200u/tscale} 68k AC_IN2 R9 C7 IC = {2.51*1509.53/9.53} 39k C1 3MEG 8p 1u POUT ZCD Load 0.5A C1 = 1F U1 VCC COMP POUT ZCD GND TB6819AFG *Analysis directives: .TRAN 0 20ms 16m 100n Iload = 0.5A as FB_IN MULT .OPTIONS ABSTOL= 100n PO=200W at IS .OPTIONS GMIN= 1.0E-8 MULT VO=400V .OPTIONS ITL1= 500 FB_IN .OPTIONS ITL2= 200 COMP .OPTIONS ITL4= 40 C8 C9 R3 R10 D5 10k .OPTIONS RELTOL= 0.01 22k 47uF 0.1uF DZ18V IS R4 100 .OPTIONS VNTOL= 100u C5 IC = 17.9 C3 C4 C6 3300p R1 {10n/tscale} {0.47u/tscale} R7 9.53k 0.11 IC = 4.22 {1u/tscale} 0 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 21
  • 22. Simulation of Step (3) and (4) 405V VO=400Vdc with high switching ripple 400V SEL>> 395V V(VOUT) 10A I(L1) 5A 0A -I(L1) 20V Switching Control Signal, fs = 48.4 kHz 10V 0V 16.45ms 16.46ms 16.47ms 16.48ms 16.49ms 16.50ms 16.51ms 16.52ms 16.53ms 16.54ms 16.55ms V(POUT) Time Total simulation time = 976.83 seconds All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 22
  • 23. (5) Auxiliary Winding L2 The auxiliary winding L2 is used to detect the zero inductor current condition of the inductor L1. Since the maximum reference voltage for the ZCD comparator is 1.9V (the IC specification) , N1/N2 should meet the following condition: VO  2  VAC, in, max N1/N2  1.9 Output DC Voltage, VO 400 V Maximum AC Input Voltage, VAC, in, max 265 V Calculated Turn Number Ratio, N1/N2 < 14 Selected Transformer Turn Ratio, N1/N2 (actual) 9.6* Where N1 is the number of winding of turns of L1, N2 is that of L2 *To ensure that the design requirements are met, N1/N2 should preferably about 10 (9.6 is used) to allow for design margins. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 23
  • 24. Simulation of Step (5) Vin, min = 265Vac with N1/N2=9.6, input frequency 50Hz, parameter N = PARAMETERS: L = 230u tscale = 10 N2/N1 = 1/9.6 N = {1/9.6} D3 N=N2/N1, L2=(N^2)*L1 PARAMETERS: tscale = 10 Diode I(L1) L1 {L} K1 D2 PARAMETERS: DB1 Rtf 2 1 K V1 VOUT f req = 50 Diode K_Linear Diode 1 2 COUPLING = 1 Vin = 265 R11 L2 DB4 360k {N*N*L} L1 = L1 AC_IN1 L2 = L2 V2 0 D4 R8 R2 Vin DB3 DB2 Diode 100k R5 Q1 1.5MEG FREQ = {f req*tscale} MOSFET VAMPL = {Vin*1.414} 10 VCC R6 R12 C2 {200u/tscale} 68k AC_IN2 R9 C7 IC = {2.51*1509.53/9.53} 39k C1 3MEG 8p 1u POUT ZCD Load 0.5A U1 VCC COMP POUT ZCD GND TB6819AFG *Analysis directives: .TRAN 0 4ms 2ms 100n Iload = 0.5A as FB_IN MULT .OPTIONS ABSTOL= 100n PO=200W at IS .OPTIONS GMIN= 1.0E-8 MULT VO=400V .OPTIONS ITL1= 500 FB_IN .OPTIONS ITL2= 200 COMP .OPTIONS ITL4= 40 C8 C9 R3 R10 D5 10k .OPTIONS RELTOL= 0.01 22k 47uF 0.1uF DZ18V IS R4 100 .OPTIONS VNTOL= 100u C5 IC = 17.9 C3 C4 C6 3300p R1 {10n/tscale} {0.47u/tscale} R7 9.53k 0.11 IC = 2.533 {1u/tscale} 0 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 24
  • 25. Simulation of Step (5) 400V 0V VAC, in, min=265V (VPEAK, in, min=265*1.4142=374.8V) -400V V(AC_IN1,AC_IN2) 425V VO=400V and PO=200W 400V SEL>> 375V V(VOUT) 5.0A I(L1) 2.5A 0A -I(L1) 7.5 V(ZCD) and the maximum reference voltage of the TB6819AFG’s ZCD comparator, 1.9V 5.0 2.5 0 20ms 22ms 24ms 26ms 28ms 30ms 32ms 34ms 36ms 38ms 40ms V(ZCD) 1.9 Time*10 Total simulation time = 1012.86 seconds All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 25
  • 26. (6) Multiplier Input Circuit (MULT) The AC input supply voltage (sinewave) is applied to the multiplier by dividing a full-wave rectified voltage waveform. The IC startup threshold voltages of the Brown Out Protection (BOP) function = 0.75V and the MULT linear input voltage range of the multiplier = 0 to 3V, the R9 and R10 resistor should satisfy the following condition: VAC, in, min  2  R10 VAC, in, max  2  R10 0.75  and 3 R 9  R10 R9  R10 Maximum AC Input Voltage, VAC, in, min 400 V Maximum AC Input Voltage, VAC, in, max 265 V R9 3 M R10 22 k Minimum Condition for BOP 0.875 > 0.75 Maximum Condition for Linear MULT 2.728 <3 with excel calculation sheet PFC_Cal-Sht.xlsx you can input R9 and R10 values, then check the calculated BOP and Linear MULT values to be within the maximum values. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 26
  • 27. Simulation of Step (6) at Vin, max Vin, max = 265Vac with PARAMETERS: frequency 50Hz, L = 230u tscale = 10 N = {1/9.6} D3 N=N2/N1, L2=(N^2)*L1 PARAMETERS: tscale = 10 Diode L1 K1 {L} D2 PARAMETERS: DB1 Rtf 2 1 K V1 VOUT f req = 50 Diode K_Linear Diode 1 2 COUPLING = 1 Vin = 265 R11 L2 DB4 360k {N*N*L} L1 = L1 AC_IN1 L2 = L2 V2 0 D4 R8 R2 Vin DB3 DB2 Diode 100k R5 Q1 1.5MEG FREQ = {f req*tscale} MOSFET VAMPL = {Vin*1.414} 10 VCC R6 R12 C2 {200u/tscale} 68k AC_IN2 R9 C7 IC = {2.51*1509.53/9.53} 39k C1 3MEG 8p 1u POUT ZCD Load 0.5A R10=3M and U1 VCC COMP POUT ZCD GND TB6819AFG *Analysis directives: R11=22k Iload = 0.5A as .TRAN 0 4ms 2ms 100n FB_IN MULT .OPTIONS ABSTOL= 100n PO=200W at IS .OPTIONS GMIN= 1.0E-8 MULT VO=400V .OPTIONS ITL1= 500 FB_IN .OPTIONS ITL2= 200 COMP .OPTIONS ITL4= 40 C8 C9 R3 R10 D5 10k .OPTIONS RELTOL= 0.01 22k 47uF 0.1uF DZ18V IS R4 100 .OPTIONS VNTOL= 100u C5 IC = 17.9 C3 C4 C6 3300p R1 {10n/tscale} {0.47u/tscale} R7 9.53k 0.11 IC = 2.533 {1u/tscale} 0 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 27
  • 28. Simulation of Step (6) at Vin, max 400V 200V 0V VAC, in, max=265V (VPEAK, in, min=265*1.4142=374.8V) -200V SEL>> -400V V(AC_IN1,AC_IN2) 400V 300V 200V 100V Full-wave rectified voltage 0V V(Rtf) 4.0 3.0 V(MULT) < MULT linear input maximum voltage (3V) 2.0 1.0 0 20ms 22ms 24ms 26ms 28ms 30ms 32ms 34ms 36ms 38ms 40ms V(MULT) 3 Time*10 Total simulation time = 1012.86 seconds All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 28
  • 29. Simulation of Step (6) at Vin, min Vin, min = 85Vac with PARAMETERS: frequency 50Hz, L = 230u tscale = 10 N = {1/9.6} D3 N=N2/N1, L2=(N^2)*L1 PARAMETERS: tscale = 10 Diode L1 K1 {L} D2 PARAMETERS: DB1 Rtf 2 1 K V1 VOUT f req = 50 Diode K_Linear Diode 1 2 COUPLING = 1 Vin = 85 R11 L2 DB4 360k {N*N*L} L1 = L1 AC_IN1 L2 = L2 V2 0 D4 R8 R2 Vin DB3 DB2 Diode 100k R5 Q1 1.5MEG FREQ = {f req*tscale} MOSFET VAMPL = {Vin*1.414} 10 VCC R6 R12 C2 {200u/tscale} 68k AC_IN2 R9 C7 IC = {2.51*1509.53/9.53} 39k C1 3MEG 8p 1u POUT ZCD Load 0.5A R10=3M and U1 VCC COMP POUT ZCD GND TB6819AFG *Analysis directives: R11=22k Iload = 0.5A as .TRAN 0 20ms 16m 100n FB_IN MULT .OPTIONS ABSTOL= 100n PO=200W at IS .OPTIONS GMIN= 1.0E-8 MULT VO=400V .OPTIONS ITL1= 500 FB_IN .OPTIONS ITL2= 200 COMP .OPTIONS ITL4= 40 C8 C9 R3 R10 D5 10k .OPTIONS RELTOL= 0.01 22k 47uF 0.1uF DZ18V IS R4 100 .OPTIONS VNTOL= 100u C5 IC = 17.9 C3 C4 C6 3300p R1 {10n/tscale} {0.47u/tscale} R7 9.53k 0.11 IC = 4.22 {1u/tscale} 0 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 29
  • 30. Simulation of Step (6) at Vin, min 200V 0V VAC, in, min=85V (VPEAK, in, min=85*1.4142=120.2V) -200V V(AC_IN1,AC_IN2) 120V Full-wave rectified voltage 80V 40V SEL>> 0V V(Rtf) 1.0 V(MULT) > BOP threshold voltage (0.75V) 0.5 0 180ms 182ms 184ms 186ms 188ms 190ms 192ms 194ms 196ms 198ms 200ms V(MULT) 0.75 Time*10 Total simulation time = 976.83 seconds All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 30
  • 31. (7) Current Detection Circuit (IS) Iq1 (power switch current) is converted into voltage by R7, then applied to the IS pin. The R7 resistor value calculation follows these steps: 1) The maximum current of the Q1 current, Iq1 (max) should allow the output power PO to meet the specification. Therefore, the following equation should be satisfied: P  100  2  2 Iq1(max.) O  (η  VAC,in,min  2 ) 2) the IS pin peak voltage (Visp) is calculated using the following equation: 0.65  VAC, in, min  2  R10 Visp  R9  R10 3) R7 = Visp / Iq1(max.). Minimum ac input voltage, VAC, in, min 85 V Output power, PO 200 W Power efficiency,  (assumed) 90 % R9 3 M R10 22 k Power switch current, Iq1(max.) 5.23 A TB6819AFG IS pin peak voltage Visp 0.57 V R7 0.11  All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 31