デザインキット・PV Li-Ion Battery Systemの解説書
Upcoming SlideShare
Loading in...5
×
 

デザインキット・PV Li-Ion Battery Systemの解説書

on

  • 1,537 views

デザインキット・PV Li-Ion Battery Systemの解説書

デザインキット・PV Li-Ion Battery Systemの解説書

Statistics

Views

Total Views
1,537
Views on SlideShare
1,429
Embed Views
108

Actions

Likes
0
Downloads
12
Comments
0

7 Embeds 108

http://www.beetech.info 80
http://beetech-icyk.blogspot.jp 10
http://www33.jimdo.com 6
http://d.hatena.ne.jp 6
http://beetech-icyk.blogspot.com 4
http://webcache.googleusercontent.com 1
http://beetech.dgblog.dreamgate.gr.jp 1
More...

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

デザインキット・PV Li-Ion Battery Systemの解説書 デザインキット・PV Li-Ion Battery Systemの解説書 Presentation Transcript

  • Design KitPV Li-Ion Battery System All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1
  • Contents Slide # 1. Lithium-Ion Batteries Pack 1.1 Lithium-Ion Batteries Pack Specification.............................................................. 3 1.2 Discharge Time Characteristics........................................................................... 4 1.3 Single Cell Discharge Characteristics.................................................................. 5 1.4 Charge Time Characteristics................................................................................ 6 2. Solar Cells 2.1 Solar Cells Specification...................................................................................... 7 2.2 Output Characteristics vs. Incident Solar Radiation............................................. 8 3. Solar Cell Battery Charger......................................................................................... 9 3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit..................................... 10 3.2 PV Li-Ion Battery Charger Circuit........................................................................ 11 3.3 Charging Time Characteristics vs. Weather Condition......................................... 12 3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit + Constant Current...... 13 3.5 Constant Current PV Li-Ion Battery Charger Circuit............................................. 14 3.6 Charging Time Characteristics vs. Weather Condition + Constant Current.......... 15 4. Simulation PV Li-Ion Battery System in 24hr. 4.1 Concept of Simulation PV Li-Ion Battery System in 24hr..................................... 16 4.2 Short-Circuit Current vs. Time (24hr.).................................................................. 17 4.3 PV-Battery System Simulation Circuit.................................................................. 18 4.3 PV-Battery System Simulation Result.................................................................. 19-23 Simulations index............................................................................................................ 24 All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 2
  • 1.1 Lithium-Ion Batteries Pack Specification BAYSUN’s Lithium-Ion Batteries Pack : Power Battery Plus (PBT-BAT-0001) • Capacity............................65[Wh], 4400[mAh] (Approximately) • Rated Current....................3[A] • Input Voltage.......................20.5 [Vdc] • Output Voltage....................12.8 ~ 16.4 [Vdc] ( 4 cells ) • Charging time......................5[hours] (Approximately) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 3
  • 1.2 Discharge Time Characteristics D1 DMOD PARAMETERS: Voch rate = 1 16.8Vdc CAh = 4400m 0 Hi 0.2C ( 880 mA ) 0 C1 U1 0.5C ( 2200 mA ) IN+ OUT+ 1n + - PBT-BAT-0001 IN- OUT- G1 0 TSCALE = 3600 GVALUE SOC1 = 100 1C ( 4400 mA ) limit(V(%IN+, %IN-)/0.01, 0, rate*CAh ) TSCALE=3600 0 means time Scale (Simulation time : Batteries Pack Model Parameters Real time) is 1:3600 NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% TSCALE (time scale) , simulation : real time 1 : 3600s or 1s : 1h Discharge Rate : 0.2C(880mA), 0.5C(2200mA), and 1C(4400mA) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 4
  • 1.3 Single Cell Discharge Characteristics Single cell Measurement Simulation 4.50 0.2C ( 880mA ) 0.5C ( 2200mA ) 1.0C ( 4400mA ) 4.00 VOLTAGE [V] 3.50 3.00 2.50 2.00 100 90 80 70 60 50 40 30 20 10 0 -10 SOC [%]• Single cell discharge characteristics are compared between measurement data and simulation data. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 5
  • 1.4 Charge Time Characteristics SOC [%] D1 PARAMETERS: rate = 0.2 DMOD CAh = 4400m G1 Voch GVALUE 16.8Vdc Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh ) 0 Hi OUT+ OUT- C1 U1 0 1n + - PBT-BAT-0001 IN+ IN- 0 TSCALE = 3600 SOC1 = 0 Vin 20.5VdcVbatt [V] ICharge [A] 0 Batteries Pack Model Parameters NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% TSCALE (time scale) , simulation : real time 1 : 3600s or 1s : 1h Charger Adaptor Input Voltage = 20.5 Vdc Input Current = 880 mA(max.) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 6
  • 2.1 Solar Cells Specification BP Solar’s photovoltaic module : SX330 • Maximum power (Pmax)..............30[W] • Voltage at Pmax (Vmp).............16.8[V] • Current at Pmax (Imp)...............1.78[A] 502mm • Short-circuit current (Isc)...........1.94[A] • Open-circuit voltage(Voc)...........21.0[V] 595mm All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 7
  • 2.2 Output Characteristics vs. Incident Solar Radiation SX330 Output Characteristics vs. Incident Solar Radiation SOL=1 Current (A) SOL=0.5 + U1 SOL=0.16 SX330 SX330 SOL = 1 SOL=1 Power (W) Parameter, SOL is added as SOL=0.5 normalized incident radiation, where SOL=1 for AM1.5 SOL=0.16 conditions Voltage (V) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 8
  • 3. Solar Cell Battery Charger• Solar Cell charges the Li-ion batteries pack (PBT-BAT-001) with direct connect technique. Choose the solar cell that is able to provide current at charging rate or more with the maximum power voltage (Vmp) nears the batteries pack charging voltage.• PBT-BAT-0001 (Li-ion batteries pack) – Charging time is approximately 5 hours with charging rate 0.2C or 880mA – Voltage during charging with 0.2C is between 14.7 to 16.9 V 14.9 V 14.7 V 0.2C or 880mA All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 9
  • 3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 16.8V Clamp Circuit Photovoltaic Lithium-Ion Module Batteries Pack SX 330 (BP Solar) PBT-BAT-0001 (BAYSUN) Vmp=16.8V DC12.8~16.4V (4 cells) Pmax=30W 4400mAh All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 10
  • 3.2 PV Li-Ion Battery Charger Circuit D1 PARAMETERS: DMOD sol = 1 Voch 16.8Vdc pv 0 Hi + C1 U1 0 U2 1n + - PBT-BAT-0001 SX330 SX330 SOL = {sol} 0 TSCALE = 3600 SOC1 = 0 0 • Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident radiation, where SOL=1 for AM1.5 conditions. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 11
  • 3.3 Charging Time Characteristics vs. Weather Condition sol = 1.00 sol = 0.50 sol = 0.16 • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 12
  • 3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit+ Constant Current Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 16.8V Clamp Circuit Constant Photovoltaic Current Lithium-Ion Module Control Batteries Pack Circuit SX 330 (BP Solar) Icharge=0.2C (880mA) PBT-BAT-0001 (BAYSUN) Vmp=16.8V DC12.8~16.4V (4 cells) Pmax=30W 4400mAh All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 13
  • 3.5 Constant Current PV Li-Ion Battery Charger Circuit D1 PARAMETERS: PARAMETERS: DMOD sol = 1 rate = 0.2 CAh = 4400m Voch 16.8Vdc pv 0 Hi OUT+ OUT- + C1 U1 0 U2 1n + - PBT-BAT-0001 SX330 IN+ IN- SX330 SOL = {sol} 0 TSCALE = 3600 G1 SOC1 = 0 GVALUE 0 Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh) • Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the • “PARAMETERS: CAh = 4400m and rate = 0.2 ” to set the charging current. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 14
  • 3.6 Charging Time Characteristics vs. Weather Condition(Constant Current) sol = 1.00 sol = 0.50 sol = 0.16 • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate current more than the constant charge rate (0.2A), battery can be fully charged in about 5 hour. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 15
  • 4.1 Concept of Simulation PV Li-Ion Battery System in 24hr. Over Voltage The model contains 24hr. Protection Circuit solar power data (example). 16.8V Clamp Circuit Photovoltaic Lithium-Ion Module Batteries Pack Low-Voltage PBT-BAT-0001 (BAYSUN) SX 330 (BP Solar) Shutdown DC12.8~16.4V (4 cells) Vmp=16.8V Circuit 4400mAh Pmax=30W Vopen= (V) Vclose= (V) DC/DC DC Load Converter VIN=10~18V VIN = 5V VOUT=5V IIN = 1.5A All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 16
  • 4.2 Short-Circuit Current vs. Time (24hr.) The model contains 24hr. solar power data (example). + U2 SX330 SX330_24H_TS3600 • Short-circuit current vs. time characteristics of photovoltaic module SX330 for 24hours as the solar power profile (example) is included to the model. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 17
  • 4.3 PV-Battery System Simulation CircuitSolar cell model D1with 24hr. solar Set initial battery DMOD power data. voltage, IC=16.4, for convergence aid. Voch 16.8Vdc pv 0 D2 batt DMOD C1 + 100n U1 0 Low-Voltage Shutdown Circuit IC = 16.4 + - PBT-BAT-0001 U2 SX330 SX330_24H_TS3600 VON = 0.7 0 TSCALE = 3600 VOFF = 0.3 E1 SOC1 = 70 RON = 0.01 Ronof f EVALUE 0 ROFF = 10MEG 100 IF(V(batt1)>V(dchth),5,0) Ronof f 1 + + Lctrl batt1 OUT+ IN+ C3 - - Conof f OUT- IN- dchth 100 10n S2 1n SOC1 value is initial 0 OUT+ IN+ S IC = 5 OUT- IN- Conof f 1 100n State Of Charge of PARAMETERS: E2 the battery, is set as Lopen = 14 EVALUE IF( V(lctrl) > 0.25 ,Lopen ,Lclose) 70% of full voltage. Lclose = 15.2 0 Lopen value is load DC/DC Converter 7.5W Load shutdown voltage. (5Vx1.5A). PARAMETERS: Lclose value is load n=1 out_dc reconnect voltage IN OUT G1 Iomax I1 E3 IN+ OUT+ 1.5Adc IN+ OUT+ IN+ OUT+ IN- OUT- IN- OUT- IN- OUT- GVALUE ecal_Iomax EVALUE EVALUE IF( I(OUT)-V(Iomax) > 0 ,n*V(%IN+, %IN-)*I(IN)/(I(OUT)+1u), 5 ) 0 n*V(%IN+, %IN-)*I(IN)/5 Limit( V(%IN+, %IN-)/0.1, 1m, 5*I(out)/(n*limit(V(%IN+, %IN-),10,25)) ) 0 0  Simulation at 15W load, change I1 from 1.5A to 3A All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 18
  • 4.3.1 Simulation Result (SOC1=100)PV generated current PV module charge the batteryBattery voltageBattery current Battery supplies current when solar power drops.Battery SOC SOC1=100 Fully charged, stop chargingDC output voltageDC/DC input current Charging time • C1: IC=16.4 • Run to time: 24s (24hours in real world) • .Options ITL4=1000 • Step size: 0.01s All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 19
  • 4.3.2 Simulation Result (SOC1=70)PV generated current PV module charge the battery V=LopenBattery voltageBattery current V=Lclose Battery supplies current when solar power drops. SOC1=70Battery SOC Fully charged, stop chargingDC output voltage ShutdownDC/DC input current Reconnect Charging time • C1: IC=16.4 • Run to time: 24s (24hours in real world) • .Options ITL4=1000 • Step size: 0.01s • SKIPBP All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 20
  • 4.3.3 Simulation Result (SOC1=30)PV generated current PV module charge the batteryBattery voltage V=LopenBattery current V=Lclose Battery supplies current when solar power drops.Battery SOC Fully charged, SOC1=30 stop chargingDC output voltage ShutdownDC/DC input current Reconnect Charging time • C1: IC=15 • Run to time: 24s (24hours in real world) • .Options ITL4=1000 • Step size: 0.01s • Total job time = 2s All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 21
  • 4.3.4 Simulation Result (SOC1=10)PV generated current PV module charge the batteryBattery voltageBattery current V=Lclose Battery supplies current when solar power drops.Battery SOC Fully charged, SOC1=10 stop chargingDC output voltage ShutdownDC/DC input current Reconnect Charging time • C1: IC=14.4 • Run to time: 24s (24hours in real world) • .Options RELTOL=0.01 • Step size: 0.01s • .Options ITL4=1000 • SKIPBP All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 22
  • 4.3.5 Simulation Result (SOC1=100, IL=3A or 15W load)PV generated current PV module charge the battery V=LopenBattery voltage V=LopenBattery current Battery supplies current when solar power drops.Battery SOC SOC1=100 Fully charged, stop chargingDC output voltage Shutdown ShutdownDC/DC input current Charging time • C1: IC=16.4 • Run to time: 24s (24hours in real world) • .Options ITL4=1000 • Step size: 0.001s All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 23
  • 4.3.4 Simulation Result (Example of Conclusion)The simulation start from midnight(time=0). The system supplies DC load 7.5W.• If initial SOC is 100%, – this system will never shutdown.• If initial SOC is 70%, – this system will shutdown after 5.185 hours (about 5:11AM.). – system load will reconnect again at 7:40AM (Morning).• If initial SOC is 30%, – this system will shutdown after 1.633 hours (about 1:38AM.). – system load will reconnect again at 7:37AM (Morning).• If initial SOC is 10%, – this system will start shutdown. – this system will reconnect again at 7:37AM (Morning).• With the PV generated current profile, battery will fully charged in about 4.25 hours.The simulation start from midnight(time=0). The system supplies DC load 15W.• If initial SOC is 100%, – this system will shutdown after 3.897 hours (about 3:54AM.). – system load will reconnect again at 7:37AM (Morning). – this system will shutdown again at 8:28 PM (Night).• With the PV generated current profile, battery will fully charged in about 5.5 hours. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 24
  • Simulations index Simulations Folder name 1. PV Li-Ion Battery Charger Circuit................................................... charge-sol 2. Constant Current PV Li-Ion Battery Charger Circuit...................... charge-sol-const 3. PV-Battery System Simulation Circuit (SOC1=100)....................... sol_24h_soc100 4. PV-Battery System Simulation Circuit (SOC1=70)......................... sol_24h_soc70 5. PV-Battery System Simulation Circuit (SOC1=30)......................... sol_24h_soc30 6. PV-Battery System Simulation Circuit (SOC1=10)......................... sol_24h_soc10 7. PV-Battery System Simulation Circuit (SOC1=100, 15W)............. sol_24h_soc100_15W All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 25