0
1. The Simulation of DC Motor Control Circuit <ul><li>DC Motor Model </li></ul><ul><li>⇒ The model features on transient c...
<ul><ul><li>MABUCHI MOTOR RS-380PH </li></ul></ul><ul><ul><li>Voltage Range..........................12.0 V </li></ul></ul...
2.2 Torque Constant and Back EMF Constant <ul><li>The Torque Constant  K T  is obtained as: </li></ul><ul><ul><li>RS-380PH...
2.3 The Armature Inductance and Resistance <ul><li>The Armature Inductance and Resistance are obtained with a Precision Im...
2.5 Transient Response at No Load <ul><li>The test setup include 12Vdc source ,series resistor and the motor. </li></ul><u...
2.6 Transient Response at No Load (Model) <ul><li>This figure shows the result of the start-up transient simulation with R...
2.7 Speed at No Load (Model) <ul><li>This figure shows the simulated speed at no load (16,400rpm). To monitor the speed ,t...
2.8 The Motor Steady-State Current Condition Setting (1/2) <ul><li>This figure shows the current waveforms of the motor wi...
2.8 The Motor Steady-State Current Condition Setting (2/2) <ul><li>This figure shows the unmatched value of the steady-sta...
2.9 Transient Response at Load 3.8A  (Measurement vs. Simulation) <ul><li>This figure shows the result of the start-up tra...
4.2  Motor Voltage and Current  <ul><li>Measurement </li></ul><ul><li>Simulation </li></ul>All Rights Reserved Copyright (...
Appendix A: Simulation Settings All Rights Reserved Copyright (C) Bee Technologies Inc. 2011 select  S PICE Directive Edit...
Upcoming SlideShare
Loading in...5
×

LTspiceのDCモーターシミュレーション事例

917

Published on

LTspiceのDCモーターシミュレーション事例の資料です。

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
917
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
9
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "LTspiceのDCモーターシミュレーション事例"

  1. 1. 1. The Simulation of DC Motor Control Circuit <ul><li>DC Motor Model </li></ul><ul><li>⇒ The model features on transient characteristics of the motor. </li></ul><ul><li>LM555 Timer IC Model </li></ul><ul><li>⇒ The model features on functions of the IC. </li></ul>All Rights Reserved Copyright (C) Bee Technologies Inc. 2011 Key simulation models
  2. 2. <ul><ul><li>MABUCHI MOTOR RS-380PH </li></ul></ul><ul><ul><li>Voltage Range..........................12.0 V </li></ul></ul><ul><ul><li>Normal Voltage.........................7.2 V </li></ul></ul><ul><ul><li>Normal Load.............................9.8 mN  m </li></ul></ul><ul><ul><li>Speed at No Load.....................16,400 rpm </li></ul></ul><ul><ul><li>At Normal Load </li></ul></ul><ul><ul><ul><li>Speed................................14,200 rpm </li></ul></ul></ul><ul><ul><ul><li>Current...............................2.9A </li></ul></ul></ul>2.1 Manufacturer Specification All Rights Reserved Copyright (C) Bee Technologies Inc. 2011
  3. 3. 2.2 Torque Constant and Back EMF Constant <ul><li>The Torque Constant K T is obtained as: </li></ul><ul><ul><li>RS-380PH at Normal Load: </li></ul></ul><ul><ul><ul><li>Torque = 9.8 mN  m </li></ul></ul></ul><ul><ul><ul><li>I Normal Load = 2.9 A </li></ul></ul></ul><ul><ul><ul><li>K T = 9.8/2.9 = 3.379 mN  m/A </li></ul></ul></ul><ul><li>The Back EMF Constant K E is obtained as: </li></ul><ul><ul><li>RS-380PH at No Load: </li></ul></ul><ul><ul><ul><li>Speed = 16,400 rpm </li></ul></ul></ul><ul><ul><ul><li>V EMF = V Normal - R M  I No Load = 7.2-0.3456 = 6.8544 V </li></ul></ul></ul><ul><ul><ul><li>, R M =0.576  and I No Load =0.6A (measurement data) . </li></ul></ul></ul><ul><ul><ul><li>K E =6.8544/16,400 = 0.41795 mV/rpm </li></ul></ul></ul>All Rights Reserved Copyright (C) Bee Technologies Inc. 2011 (1) (2)
  4. 4. 2.3 The Armature Inductance and Resistance <ul><li>The Armature Inductance and Resistance are obtained with a Precision Impedance Anayzer (Agilent 4294A) </li></ul><ul><li>L S = 165 uH and R S = 575.977 m  </li></ul>All Rights Reserved Copyright (C) Bee Technologies Inc. 2011 Calculated Measured Precision Impedance Analyzer |Z| vs. Frequency measured data.
  5. 5. 2.5 Transient Response at No Load <ul><li>The test setup include 12Vdc source ,series resistor and the motor. </li></ul><ul><li>The result is used to obtain the start-up current and the steady state current. </li></ul><ul><li>The time constant of the current response will be used to determine the parameters that model the motor shaft’s inertia. </li></ul><ul><li>This figure is the motor current and voltage at start-up transient (oscilloscope screen captured) . </li></ul>All Rights Reserved Copyright (C) Bee Technologies Inc. 2011 Start-up current Steady-state current Time constant Measurement
  6. 6. 2.6 Transient Response at No Load (Model) <ul><li>This figure shows the result of the start-up transient simulation with RS-380PH motor model at condition 12V ,no load. </li></ul>All Rights Reserved Copyright (C) Bee Technologies Inc. 2011 Start-up current Steady-state current Time constant Simulation Torque constant and back EMF constant. Time (s)
  7. 7. 2.7 Speed at No Load (Model) <ul><li>This figure shows the simulated speed at no load (16,400rpm). To monitor the speed ,trace “ I(U1.Vrpm) ” inside the model .SUBCKT. </li></ul><ul><li>Note: To show I(U1.Vrmp), select  &quot;Save Subcircuit Device Currents“ ( Tool > Control Panel > Save Default [tab] ). </li></ul>All Rights Reserved Copyright (C) Bee Technologies Inc. 2011 Speed at No Load =16,400 rpm. Simulation Normal Voltage =7.2V. Motor current Time (s)
  8. 8. 2.8 The Motor Steady-State Current Condition Setting (1/2) <ul><li>This figure shows the current waveforms of the motor with the different rated torque load ,that result as the different steady-state current. </li></ul><ul><li>Since the simulations are focused on the electrical world ,the RS-380PH spice model is directly conditioned by input the steady-state current. </li></ul>All Rights Reserved Copyright (C) Bee Technologies Inc. 2011 Steady-state current =0.6A (no load) Simulation Steady-state current =3.8A (motor with fan) Input the Steady-State Current load condition. (ex. IL=0.6A for the No Load or IL=3.8A for the motor with fan). Time (s)
  9. 9. 2.8 The Motor Steady-State Current Condition Setting (2/2) <ul><li>This figure shows the unmatched value of the steady-state current condition when Vcc condition is 7.2Vdc (not a 12Vdc) . </li></ul><ul><li>Steady-state current simulated result will match the model input value “IL” only when the condition Vcc is 12Vdc . In the other case , “IL” value is changed until the desired steady-state current condition is met. </li></ul>All Rights Reserved Copyright (C) Bee Technologies Inc. 2011 Steady-state current =0.6A Simulation Input the value of “IL”=1.1A for the steady-state current condition 0.6A ( the value is not matched ). Time (s)
  10. 10. 2.9 Transient Response at Load 3.8A (Measurement vs. Simulation) <ul><li>This figure shows the result of the start-up transient simulation with RS-380PH motor model at condition 12V ,3.8A load. </li></ul><ul><li>The result is compared to the voltage and current waveforms obtained by the oscilloscope. </li></ul>All Rights Reserved Copyright (C) Bee Technologies Inc. 2011 Simulation Measurement I M (t) ,2A/DIV V M (t) ,5V/DIV The test setup include 12Vdc source ,0.8  series resistor and the RS-380PH motor with fan. Time (s)
  11. 11. 4.2 Motor Voltage and Current <ul><li>Measurement </li></ul><ul><li>Simulation </li></ul>All Rights Reserved Copyright (C) Bee Technologies Inc. 2011 Motor Voltage and Current Motor U5: I Motor Motor U5: V Motor Motor U5: I Motor Motor U5: V Motor
  12. 12. Appendix A: Simulation Settings All Rights Reserved Copyright (C) Bee Technologies Inc. 2011 select S PICE Directive Edit text for analysis directives (.OPTIONS)
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×