「SPICEの活用方法」セミナー資料(28JAN2011) PPT
Upcoming SlideShare
Loading in...5
×
 

「SPICEの活用方法」セミナー資料(28JAN2011) PPT

on

  • 1,905 views

2011年1月28日に発表しました「SPICEの活用方法」の資料です。このデータは、パワー・ポイント版になります。お問い合わせは、ビー・テクノロジーま...

2011年1月28日に発表しました「SPICEの活用方法」の資料です。このデータは、パワー・ポイント版になります。お問い合わせは、ビー・テクノロジーまで。info@bee-tech.com

Statistics

Views

Total Views
1,905
Views on SlideShare
1,905
Embed Views
0

Actions

Likes
0
Downloads
11
Comments
0

0 Embeds 0

No embeds

Accessibility

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

「SPICEの活用方法」セミナー資料(28JAN2011) PPT 「SPICEの活用方法」セミナー資料(28JAN2011) PPT Presentation Transcript

  • Copyright (C) Bee Technologies Inc. 2011
    1
    SPICEの活用方法
    「コンセプトキット」でパラメータベース・シミュレーション
    1.PWM Buck Converter Average Model←[DEMO] フィードバック制御におけるアベレージモデルを活用した 位相余裕度のシミュレーションの活用方法を解説していきます。2.ステッピングモータのコンセプトキット [事例紹介]2.1 ユニポーラ・ステッピングモーター制御回路2.2 バイポーラ・ステッピングモーター制御回路
    2011年1月28日(金曜日)
    株式会社ビー・テクノロジーhttp://www.bee-tech.com/horigome@bee-tech.com
  • コンセプトキットの位置付け
    Copyright (C) Bee Technologies Inc. 2011
    2
    [スパイスモデル]デバイスモデリングサービス(58種類のデバイスモデリング)
    スパイス・パーク www.spicepark.com
    シンプルモデル(NEW)←ブロックベースのスパイスモデル
    [デザインキット]回路方式のテンプレート
    コンセプトキット(NEW)←(概念設計のテンプレート)
    デザインキット(各回路方式のテンプレート)
    回路解析シミュレータSpice 系回路解析シミュレータPSpice,LTspice,MultiSim,MicroCap,HSPICE,SmartSPICE,Simplorer, and so on
  • コンセプトキットとは
    Copyright (C) Bee Technologies Inc. 2011
    3
  • デザインキット
    Copyright (C) Bee Technologies Inc. 2011
    4
    要望が多いインバータ回路方式を中心に20種類の新製品を開発中。
  • Concept Kit:PWM Buck Converter Average Model
    Copyright (C) Bee Technologies Inc. 2011
    5
  • Contents
    Concept of Simulation
    Buck Converter Circuit
    Averaged Buck Switch Model
    Buck Regulator Design Workflow
    Setting PWM Controller’s Parameters.
    Programming Output Voltage: Rupper, Rlower
    Inductor Selection: L
    Capacitor Selection: C, ESR
    Stabilizing the Converter (Example)
    Load Transient Response Simulation (Example)
    Appendix
    Type 2 Compensation Calculation using Excel
    Feedback Loop Compensators
    Simulation Index
    Copyright (C) Bee Technologies Inc. 2011
    6
  • Copyright (C) Bee Technologies Inc. 2011
    7
    Concept of Simulation
    Block Diagram:
    Power Switches
    Averaged Buck Switch Model
    Filter & Load
    Parameter:
    • L
    • C
    • ESR
    • Rload
    PWM Controller
    (Voltage Mode Control)
    Parameter:
    • VP
    • VREF
    VOUT
    VREF
    Models:
  • Buck Converter Circuit
    Copyright (C) Bee Technologies Inc. 2011
    8
    Power Switches
    Filter & Load
    PWM Controller
  • Averaged Buck Switch Model
    • The Averaged Buck Switch Model represents relation between input and output of the switch that is controlled by duty cycle – d (value between 0 and 1).
    • Transfer function of the model is
    vout = d  vin
    • The current flow into the switch is
    iin = d  iout
    Copyright (C) Bee Technologies Inc. 2011
    9
  • Buck Regulator Design Workflow
    Copyright (C) Bee Technologies Inc. 2011
    10
    Setting PWM Controller’s Parameters: VREF, VP
    1
    Setting Output Voltage: Rupper, Rlower
    2
    Inductor Selection: L
    3
    Capacitor Selection: C, ESR
    4
    Stabilizing the Converter: R2, C1, C2
    • Step1: Open the loopwith LoL=1kH and CoL=1kF then inject an AC signal to generate Bode plot. (always default)
    • Step2: Set C1=1kF, C2=1fF, (always keep the default value) and R2= calculated value (Rupper//Rlower) as the initial values.
    • Step3: Select a crossover frequency (about 10kHz or fc < fosc/4). Then complete the table.
    • Step4: Read the Gain and Phase value at the crossover frequency (10kHz) from the Bode plot, Then put the values to the table
    • Step5: Select the phase margin at the fc ( > 45 ). Then change the K value until it gives the satisfied phase margin, for this example K=6 is chosen for Phase margin = 46.
    • Remark: If K-factor fail to gives the satisfied phase margin, Increase the output capacitor C then try Step1 to Step5 again.
    5
    Load Transient Response Simulation
    6
  • Buck Regulator Design Workflow
    Copyright (C) Bee Technologies Inc. 2011
    11
    3
    4
    5
    2
    1
    • VREF, feedback reference voltage, value is given by the datasheet
    • VP= (Error Amp. Gain  vFB ) / d
    • vFB = vFBH – vFBL
    • d = dMAX – dMIN
    • Error Amp. Gain is 100 (approximated)
    where
    VP is the sawtooth peak voltage.
    vFBH is maximum FB voltage where d = 0
    vFBL is minimum FB voltage where d =1(100%)
    dMAX is maximum duty cycle, e.g. d = 0(0%)
    dMIN is minimum duty cycle, e.g. d =1(100%)
    Setting PWM Controller’s Parameters
    Copyright (C) Bee Technologies Inc. 2011
    12
    1
    The PWM block is used to transfer the error voltage (between FB and REF) to be the duty cycle.
     If vFBH and vFBLare not provided, the default value, VP=2.5 could be used.
  • Copyright (C) Bee Technologies Inc. 2011
    13
    Setting PWM Controller’s Parameters (Example)
    1
     If the VP ( sawtooth signal amplitude ) does not informed by the datasheet, It can be approximated from the characteristics below.
    from
    VP= (Error Amp. Gain  vFB )/d
    Error Amp. Gain = 100 (approximated)
    from the graph on the left, vFB= 25mV (15m - (-10m))
    d = 1 – 0 = 1
    VP ≈ ( 100  25mV )/1
    ≈ 2.5V
    vFBH
    vFB = 25mV
    vFBL
    d = 1 (100%)
    dMIN
    dMAX
    LM2575: Feedback Voltage vs. Duty Cycle
     If vFBH and vFBLare not provided, the default value, VP=2.5 could be used.
  • Use the following formula to select the resistor values.
    • Rlower can be between 1k and 5k.
    Example
    Given: VOUT = 5V
    VREF = 1.23
    Rlower = 1k
    then: Rupper = 3.065k
    Setting Output Voltage: Rupper, Rlower
    Copyright (C) Bee Technologies Inc. 2011
    14
    2
  • Inductor Selection: L
    Copyright (C) Bee Technologies Inc. 2011
    15
    Inductor Value
    The output inductor value is selected to set the converter to work in CCM (Continuous Current Mode) or DCM (Discontinuous Current Mode).
    Calculated by
    Where
    • LCCM is the inductor that make the converter to work in CCM.
    • VI,max is input maximum voltage
    • RL,min is load resistance at the minimum output current ( IOUT,min )
    • fosc is switching frequency
    3
  • Inductor Selection: L (Example)
    Copyright (C) Bee Technologies Inc. 2011
    16
    Inductor Value
    from
    Given:
    VI,max = 40V, VOUT = 5V
    IOUT,min = 0.2A
    RL,min = (VOUT /IOUT,min ) = 25
    fosc = 52kHz
    Then:
    LCCM 210(uH),
    L = 330(uH) is selected
    3
  • Capacitor Selection: C, ESR
    Copyright (C) Bee Technologies Inc. 2011
    17
    Capacitor Value
    The minimum allowable output capacitor value should be determined by
    Where
    VI, max is the maximum input voltage.
    L (H) is the inductance calculated from previous step ( ).
    • In addition, the output ripple voltage due to the capacitor ESR must be considered as the following equation.
    4
    3
  • Capacitor Selection: C, ESR (Example)
    Copyright (C) Bee Technologies Inc. 2011
    18
    Capacitor Value
    From
    and
    Given:
    VI, max = 40 V
    VOUT = 5 V
    L (H) = 330
    Then:
    C 188 (F)
    In addition:
    ESR 100m
    4
  • Copyright (C) Bee Technologies Inc. 2011
    19
    Stabilizing the Converter
    5
    H(s)
    G(s)
    • Loop gain for this configuration is
    GPWM
    The purpose of the compensator G(s)is to tailor the converter loop gain (frequency response) to make it stable when operated in closed-loop conditions.
  • Stabilizing the Converter (Example)
    Copyright (C) Bee Technologies Inc. 2011
    20
    5
    Specification:
    VOUT = 5V
    VIN = 7 ~ 40V
    ILOAD = 0.2 ~ 1A
    PWM Controller:
    VREF = 1.23V
    VP = 2.5V
    fOSC = 52kHz
    Rlower = 1k,
    Rupper = 3.1k,
    L = 330uH,
    C = 330uF (ESR = 100m)
    Task:
    • to find out the element of the Type 2 compensator ( R2, C1, and C2 )
    G(s)
    1
    e.g. Given values from National Semiconductor Corp. IC: LM2575
    2
    3
    4
  • Copyright (C) Bee Technologies Inc. 2011
    21
    Stabilizing the Converter (Example)
    5
    The element of the Type 2 compensator ( R2, C1, and C2 ), that stabilize the converter, can be extracted by using Type 2 Compensator Calculator (Excel sheet) and open-loop simulation with the Average Switch Models (ac models).
    Step2 Set C1=1kF, C2=1fF, and R2=calculated value (Rupper//Rlower) as the initial values.
    Step1 Open the loop with LoL=1kH and CoL=1kF then inject an AC signal to generate Bode plot.
     C1=1kF is AC shorted, and C2 1fF is AC opened (or Error-Amp without compensator).
  • Stabilizing the Converter (Example)
    Copyright (C) Bee Technologies Inc. 2011
    22
    5
    Step3 Select a crossover frequency (about 10kHz or fc < fosc/4 ), for this example, 10kHz is selected. Then complete the table.
    values from
    2
    Calculated value of the Rupper//Rlower
    values from
    1
  • Copyright (C) Bee Technologies Inc. 2011
    23
    Stabilizing the Converter (Example)
    5
    Gain: T(s) = H(s)GPWM
    Step4 Read the Gain and Phase value at the crossover frequency(10kHz) from the Bode plot, Then put the values to the table.
    Phase  atfc
    Tip: To bring cursor to the fc = 10kHz type “ sfxv(10k) ” in Search Command.
    Cursor Search
  • Stabilizing the Converter (Example)
    Copyright (C) Bee Technologies Inc. 2011
    24
    5
    Step5 Select the phase margin at fc (> 45 ). Then change the K value (start from K=2) until it gives the satisfied phase margin, for this example K=6 is chosen for Phase margin = 46.
    As the result; R2, C1, and C2 are calculated.
    Remark: If K-factor fail to gives the satisfied phase margin, Increase the output capacitor C then try Step1 to Step5 again.
     K Factor enable the circuit designer to choose a loop cross-over frequency and phase margin, and then determine the necessary component values to achieve these results. A very big K value (e.g. K > 100) acts like no compensator (C1 is shorted and C2 is opened).
  • Stabilizing the Converter (Example)
    Copyright (C) Bee Technologies Inc. 2011
    25
    5
    The element of the Type 2 compensator ( R2, C1, and C2 ) extraction can be completed by Type 2 Compensator Calculator (Excel sheet) with the converter average models (ac models) and open-loop simulation.
    The calculated values of the type 2 elements are, R2=122.780k, C1=0.778nF, and C2=21.6pF.
    *Analysis directives:
    .AC DEC 100 0.1 10MEG
  • Copyright (C) Bee Technologies Inc. 2011
    26
    Stabilizing the Converter (Example)
    5
    Gain and Phase responses after stabilizing
    Gain: T(s) = H(s) G(s)GPWM
    Phase  atfc
    Phase margin = 45.930 at the cross-over frequency - fc = 9.778kHz.
    Tip: To bring cursor to the cross-over point (gain = 0dB) type “ sfle(0) ” in Search Command.
    Cursor Search
  • Load Transient Response Simulation (Example)
    Copyright (C) Bee Technologies Inc. 2011
    27
    The converter, that have been stabilized, are connected with step-load to perform load transient response simulation.
    5V/2.5 = 0.2A step to 0.2+0.8=1.0A load
    *Analysis directives:
    .TRAN 0 20ms 0 1u
  • Simulation
    Measurement
    Copyright (C) Bee Technologies Inc. 2011
    28
    Load Transient Response Simulation (Example)
    Output Voltage Change
    Load Current
    • The simulation results are compared with the measurement data (National Semiconductor Corp. IC LM2575 datasheet).
  • A. Type 2 Compensation Calculation using Excel
    Copyright (C) Bee Technologies Inc. 2011
    29
  • Copyright (C) Bee Technologies Inc. 2011
    30
    B. Feedback Loop Compensators
    Type1 Compensator
    Type2 Compensator
    Type2a Compensator
    Type2b Compensator
    Type3 Compensator
  • Copyright (C) Bee Technologies Inc. 2011
    31
    C. Simulation Index
    Libraries :
    ..bucksw.lib
    ..pwm_ctr.lib
    Tool :
    • Type 2 Compensator Calculator (Excel sheet)
  • Unipolar Stepping Motor Drive Circuit
    Contents
    Concept of Simulation
    Unipolar Stepping Motor Drive Circuit
    Unipolar Stepping Motor
    Switches
    Signal Generator
    Hysteresis-Based Current Controller
    Unipolar Stepping Motor Drive Circuit (Example)
    7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
    7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
    7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
    Drive Circuit Efficiency
    Copyright (C) Bee Technologies Inc. 2011
    32
  • Copyright (C) Bee Technologies Inc. 2011
    33
    Unipolar Stepping Motor Drive Circuit
  • Copyright (C) Bee Technologies Inc. 2011
    34
    1.Concept of Simulation
    Block Diagram:
    Driver Unit:
    (e.g. Hysteresis-Based Controller)
    Parameter:
    • I_SET
    • HYS
    Switches
    (e.g. FET, Diode)
    Parameter:
    • Ron
    Control Unit
    (e.g. Microcontroller)
    Sequence:
    • One-Phase
    • Two-Phase
    • Half-Step
    Stepping Motor
    Parameter:
    • L
    • R
    Models:
  • 2.Unipolar Stepping Motor Drive Circuit
    Copyright (C) Bee Technologies Inc. 2011
    35
    Signal generator
    Hysteresis Based Current Controller
    Switches
    Supply Voltage
    Unipolar Stepping Motor
  • 3.Unipolar Stepping Motor
    Copyright (C) Bee Technologies Inc. 2011
    36
    The electrical equivalent circuit of each phase consists of an inductance of the phase winding series with resistance.
    The inductance is ideal (without saturation characteristics and the mutual inductance between phases)
    The motor back EMF is set as zero to simplified the model parameters extraction.
    Input the inductance and resistance values (parameter: L, R) of the stepping motor, that are usually provided by the manufacturer datasheet, to generally model the phase winding.
  • 4.Switches
    Copyright (C) Bee Technologies Inc. 2011
    37
    A near-ideal DIODE can be modeled by using spice primitive model (D), which parameter: N=0.01 RS=0.
    A near-ideal MOSFET can be modeled by using PSpice VSWITCH that is voltage controlled switch.
    The parameter RON represents Rds(on) characteristics of MOSFET, that are usually provide by the manufacturer datasheet. The value could be about 10m to 10 ohm.
  • 5.Signal Generator
    The signal generators are used as a microcontroller capable of generating step pulses and direction signals for the driver.
    There are 3 useful stepping sequences to control unipolar stepping motor
    Copyright (C) Bee Technologies Inc. 2011
    38
    One-Phase (Wave Drive)
    • Consumes the least power.
    • Assures the accuracy regardless of the winding imbalance.
    Two-Phase (Hi-Torque)
    • Energizes 2 phases at the same time.
    • Offers an improved torque-speed result and greater holding torque.
    Input PPS (Pulse Per Second) as a clock pulse speed(frequency).
    Half-Step
    • Doubles the stepping resolution of the motor.
    • Reduces motor resonance which could cause a motor to stall at a resonant frequency.
    • Please note that this sequence is 8 steps.
  • 5.1 One-Phase Sequence
    Copyright (C) Bee Technologies Inc. 2011
    39
    Clock
    Phase A
    ON
    Phase /A
    ON
    Phase B
    ON
    Phase /B
    ON
    1 Sequence
  • 5.2 Two-Phase Sequence
    Copyright (C) Bee Technologies Inc. 2011
    40
    Clock
    Phase A
    ON
    Phase /A
    ON
    Phase B
    ON
    Phase /B
    ON
    ON
    1 Sequence
  • 5.3 Half-Step Sequence
    Copyright (C) Bee Technologies Inc. 2011
    41
    Clock
    Phase A
    ON
    Phase /A
    ON
    Phase B
    ON
    Phase /B
    ON
    1 Sequence
  • 6.Hysteresis-Based Current Controller
    Copyright (C) Bee Technologies Inc. 2011
    42
    Controlled by the signal from the microcontroller.
    Generate the switch (MOSFET) drive signal by comparing the measured phase current with their references.
    Input the reference value at the I_SET (e.g. I_SET=0.5A) to set the regulated current level. The hysteresis current value is set at the VHYS (e.g. VHYS=0.1A).
  • 7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
    Copyright (C) Bee Technologies Inc. 2011
    43
    One-Phase Step Sequence Generator (100 pps)
    *Analysisdirectives:
    .TRAN 0 40ms 0 10u
  • 7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
    Copyright (C) Bee Technologies Inc. 2011
    44
    Clock
    Phase A Current
    I_HYS=0.1A
    I_SET=0.5A
    Phase /A Current
    Phase B Current
    Phase /B Current
  • 7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
    Copyright (C) Bee Technologies Inc. 2011
    45
    Two-Phase Step Sequence Generator (100 pps)
    *Analysisdirectives:
    .TRAN 0 40ms 0 10u SKIPBP
    .OPTIONS ITL4= 40
  • 7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
    Copyright (C) Bee Technologies Inc. 2011
    46
    Clock
    Phase A Current
    I_HYS=0.1A
    I_SET=0.5A
    Phase /A Current
    Phase B Current
    Phase /B Current
  • 7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
    Copyright (C) Bee Technologies Inc. 2011
    47
    Half-Phase Step Sequence Generator (100 pps)
    *Analysisdirectives:
    .TRAN 0 80ms 0 10u SKIPBP
    .OPTIONS ITL4= 40
  • 7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
    Copyright (C) Bee Technologies Inc. 2011
    48
    Clock
    Phase A Current
    I_HYS=0.1A
    I_SET=0.5A
    Phase /A Current
    Phase B Current
    Phase /B Current
  • 8.Drive Circuit Efficiency (%)
    Copyright (C) Bee Technologies Inc. 2011
    49
    Half-Phase Step Sequence Generator (100 pps)
    *Analysisdirectives:
    .TRAN 0 40ms 0ms 10u SKIPBP
    .STEP PARAM RON LIST 10m, 100m, 1
    .OPTIONS ITL4= 40
  • 8.Drive Circuit Efficiency (%)
    Copyright (C) Bee Technologies Inc. 2011
    50
    at switches Ron = 10m, (99.6%)
    at switches Ron = 100m, (99.3%)
    at switches Ron = 1,(95.9%)
    Note: Add trace 100*AVG(W(U1))/(-AVG(W(Vcc))) for the Efficiency.
  • Copyright (C) Bee Technologies Inc. 2011
    51
    Bipolar Stepping Motor Drive Circuit
  • Bipolar Stepping Motor Drive Circuit
    Contents
    Concept of Simulation
    Unipolar Stepping Motor Drive Circuit
    Unipolar Stepping Motor
    Switches
    Signal Generator
    Hysteresis-Based Current Controller
    Unipolar Stepping Motor Drive Circuit (Example)
    7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
    7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
    7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
    Drive Circuit Efficiency
    Copyright (C) Bee Technologies Inc. 2011
    52
  • Copyright (C) Bee Technologies Inc. 2011
    53
    1.Concept of Simulation
    Block Diagram:
    Driver Unit:
    (e.g. Hysteresis-Based Controller)
    Parameter:
    • I_SET
    • HYS
    Switches
    (e.g. FET, Diode)
    Parameter:
    • Ron
    Control Unit
    (e.g. Microcontroller)
    Sequence:
    • One-Phase
    • Two-Phase
    • Half-Step
    Stepping Motor
    Parameter:
    • L
    • R
    Models:
  • Signal generator
    Hysteresis Based Current Controller
    2.Unipolar Stepping Motor Drive Circuit
    Copyright (C) Bee Technologies Inc. 2011
    54
    Bipolar Stepping Motor
    H-Bridge Switches (Driver)
    Supply Voltage
  • 3.Bipolar Stepping Motor
    Copyright (C) Bee Technologies Inc. 2011
    55
    The electrical equivalent circuit of each phase consists of an inductance of the phase winding series with resistance.
    The inductance is ideal (without saturation characteristics and the mutual inductance between phases)
    The motor back EMF is set as zero to simplified the model parameters extraction.
    Input the inductance and resistance values (parameter: L, R) of the stepping motor, that are usually provided by the manufacturer datasheet, to generally model the phase winding.
  • 4.Switches
    Copyright (C) Bee Technologies Inc. 2011
    56
    A near-ideal DIODE can be modeled by using spice primitive model (D), which parameter: N=0.01 RS=0.
    A near-ideal MOSFET can be modeled by using PSpice VSWITCH that is voltage controlled switch.
    MOSFETs are used as a H-Bridge.
    The parameter RON represents Rds(on) characteristics of MOSFET, that are usually provide by the manufacturer datasheet. The value could be about 10m to 10 ohm.
  • 5.Signal Generator
    The signal generators are used as a microcontroller capable of generating step pulses and direction signals for the driver.
    There are 3 useful stepping sequences to control unipolar stepping motor
    Copyright (C) Bee Technologies Inc. 2011
    57
    One-Phase (Wave Drive)
    • Consumes the least power.
    • Assures the accuracy regardless of the winding imbalance.
    Two-Phase (Hi-Torque)
    • Energizes 2 phases at the same time.
    • Offers an improved torque-speed result and greater holding torque.
    Input PPS (Pulse Per Second) as a clock pulse speed(frequency).
    Half-Step
    • Doubles the stepping resolution of the motor.
    • Reduces motor resonance which could cause a motor to stall at a resonant frequency.
    • Please note that this sequence is 8 steps.
  • 5.1 One-Phase Sequence
    Copyright (C) Bee Technologies Inc. 2011
    58
    Clock
    Phase A
    ON
    Phase /A
    ON
    Phase B
    ON
    Phase /B
    ON
    1 Sequence
  • 5.2 Two-Phase Sequence
    Copyright (C) Bee Technologies Inc. 2011
    59
    Clock
    Phase A
    ON
    Phase /A
    ON
    Phase B
    ON
    Phase /B
    ON
    ON
    1 Sequence
  • 5.3 Half-Step Sequence
    Copyright (C) Bee Technologies Inc. 2011
    60
    Clock
    Phase A
    ON
    Phase /A
    ON
    Phase B
    ON
    Phase /B
    ON
    1 Sequence
  • 6.Hysteresis-Based Current Controller
    Copyright (C) Bee Technologies Inc. 2011
    61
    Controlled by the signal from the microcontroller.
    Generate the switch (MOSFET) drive signal by comparing the measured phase current with their references.
    Input the reference value at the I_SET (e.g. I_SET=0.5A) to set the regulated current level. The hysteresis current value is set at the VHYS (e.g. VHYS=0.1A).
  • 7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
    Copyright (C) Bee Technologies Inc. 2011
    62
    One-Phase Step Sequence Generator (100 pps)
    *Analysisdirectives:
    .TRAN 0 80ms 0 10u SKIPBP
    .OPTIONS ITL4= 40
  • 7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
    Copyright (C) Bee Technologies Inc. 2011
    63
    Clock
    Phase A Current
    I_HYS=0.1A
    I_SET=0.5A
    Phase /A Current
    Phase B Current
    Phase /B Current
  • 7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
    Copyright (C) Bee Technologies Inc. 2011
    64
    One-Phase Step Sequence Generator (100 pps)
    *Analysisdirectives:
    .TRAN 0 80ms 0 10u SKIPBP
    .OPTIONS ITL4= 40
  • 7.2 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
    Copyright (C) Bee Technologies Inc. 2011
    65
    Clock
    Phase A Current
    I_HYS=0.1A
    I_SET=0.5A
    Phase /A Current
    Phase B Current
    Phase /B Current
  • 7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
    Copyright (C) Bee Technologies Inc. 2011
    66
    One-Phase Step Sequence Generator (100 pps)
    *Analysisdirectives:
    .TRAN 0 160ms 0 10u SKIPBP
    .OPTIONS ITL4= 40
  • 7.3 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
    Copyright (C) Bee Technologies Inc. 2011
    67
    Clock
    Phase A Current
    I_HYS=0.1A
    I_SET=0.5A
    Phase /A Current
    Phase B Current
    Phase /B Current
  • 8.Drive Circuit Efficiency (%)
    Copyright (C) Bee Technologies Inc. 2011
    68
    One-Phase Step Sequence Generator (100 pps)
    *Analysisdirectives:
    .TRAN 0 80ms 0 10u SKIPBP
    .STEP PARAM RON LIST 10m, 100m, 1
    .OPTIONS ITL4= 40
  • 8.Drive Circuit Efficiency (%)
    Copyright (C) Bee Technologies Inc. 2011
    69
    at switches Ron = 10m, (99.7%)
    at switches Ron = 100m, (99.8%)
    at switches Ron = 1, (86%)
    Note: Add trace 100*AVG(W(U1))/(-AVG(W(Vcc))) for the Efficiency.
  • Bee Technologies Group
    デバイスモデリング
    スパイス・パーク(スパイスモデル・ライブラリー) シンプルモデル(準備中)
    デザインキット
    コンセプトキット(準備中)
    デバイスモデリング教材
    【本社】
    株式会社ビー・テクノロジー
    〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階
    代表電話: 03-5401-3851
    設立日:2002年9月10日
    資本金:8,830万円
    【子会社】
    Bee Technologies Corporation (アメリカ)
    Siam Bee Technologies Co.,Ltd. (タイランド)
    本ドキュメントは予告なき変更をする場合がございます。
    ご了承下さい。また、本文中に登場する製品及びサービスの名称は全て関係各社または個人の各国における商標または登録商標です。本原稿に関するお問い合わせは、当社にご連絡下さい。
    お問合わせ先)
    info@bee-tech.com
    70
    Copyright (C) Bee Technologies Inc. 2011