Big Data Telecom
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

Big Data Telecom

on

  • 126 views

Hadoop & Big Data for Telco industry

Hadoop & Big Data for Telco industry

Statistics

Views

Total Views
126
Views on SlideShare
116
Embed Views
10

Actions

Likes
1
Downloads
5
Comments
0

1 Embed 10

http://www.slideee.com 10

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Big Data Telecom Presentation Transcript

  • 1. Big  Data  -­‐‑  Telecom
  • 2. Overwhelmed  by  Data  ? Big   Data Sensor  –   Machine   based  data Clik  Stream   Data Mobile   Information Geo-­‐‑ localization   Data Sentiment   Data
  • 3. 80%  of  Telecom  Data  will  land  on   Hadoop •  Hadoop is like a data warehouse but can store a huge amount of data, different kinds of data and perform more flexible analyses •  Hadoop is open source and run on industry standard hardware : It’s ½ more economical than conventional data warehouse •  Hadoop provides more cost effective Storage, Processing & Analysis •  Hadoop delivers a foundation for profitable growth : Gain value from all your data by asking bigger questions
  • 4. Hadoop  Architecture
  • 5. Hadoop  :  The  Key  Of  A  Global  Architecture
  • 6. Big  Data  Architecture  
  • 7. From  Data  Warehouse  to  Hadoop The Challenge •  Many Data-warehouses are out of capacities •  Running out of budget before running out relevant data •  Older data archived in dark with no access Data Warehouse The Solution •  Hadoop for data storage & data processing : Parse, clean, apply structure & transform •  Free framework and data warehouse •  Retain all data for Analysis Data Warehouse Hadoop Operational  (44%) Analytics  (11%) ETL  Processing  (44%) Operational  (50%) Analytics  (50%) Storage  &  Processing Cost  is   1/10
  • 8. Disrutive  innovation  on  Big  Data Traditional   Data  base Data   Warehouse MPP   Analytics No  SQL   Data  Base Hadoop Structured   Data  Types Any  types  including   unstructured   Pre-­‐‑defined,  fixed,  required  on   write Schema Required  on  read Store  First..  Ask  question   later No  or  limited  data  processing Processing Processing  coupled  with  data Parallel  processing  /  Scale   out Enterprise  grad Mission  critical   Physical   Infrastructure Commodity  is  an  option   Much  cheaper  option
  • 9. How  Can  I  Use  Hadoop  ? Extraction,   Transformation   &  Storage Risk  Modeling Fraud   Detection Customer   Churn   Analysis Ads  Targeting Point  of  Scale   Transactional   Analysis Quality  Search Social  Analysis Real  Time   Analytics
  • 10. Want  More…     Contact@trickconsulting.com