Your SlideShare is downloading. ×
Session 68 Sigurdur Erlingsson
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Session 68 Sigurdur Erlingsson

426

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
426
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Transportforum8-9 Januari, Linköping, 2009 Vattnets inverkan på vägars nedbrytning Sigurdur Erlingsson
  • 2. Outline• Cost Action 351 – Watmove• Field observation• HVS – SE06• Conclusion
  • 3. Cost Action 351 - WATMOVEWater Movements in Road Pavements and Embankments• Homepage: www.watmove.org – Water In Pavements - WIP05 Presentations – Water In Pavements - WIP06 Presentations• Text book (Springer 2009) – WATER IN ROAD STRUCTURES Movement, Drainage & Effects Dawson, A (Ed.) http://www.springer.com/earth+sciences/hydrogeology/book/978-1-4020-8561-1
  • 4. The book1 Introduction2 Water Flow Theory for Saturated and Unsaturated Pavement Material3 Measurement Techniques for Water Flow4 Heat Transfer in Soils5 Water in Pavement Surfacing6 Sources of Fate of Water Contaminants in Roads7 Contaminant Sampling and Analysis8 Water Influences on Bearing Capacity and Pavement Performance: Field Observations9 Water Influence on Mechanical Behaviour of Pavements: Constitutive Modelling10 Water Influence on Mechanical Behaviour of Pavements: Experimental Investigation11 Modelling Coupled Mechanics, Moisture and Heat in Pavement Structures12 Pollution Mitigation13 Control of Pavement Water and Pollution Prevention
  • 5. A moisture monitoring program 20 Gravimetric moisture cont. [%] Winter thaw Spring thaw 15 Non-frost Unfrozen moisture Unfrozen moisture during winter during winter 10 5 0 1/3/00 1/4/00 1/10/99 1/12/99 31/1/00 31/10/99 31/12/99 15 Grundartangi 10 Temperature [°C] 5 0 -5 -10 1/1/00 1/2/00 1/3/00 1/4/00 1/10/99 1/11/99 1/12/99
  • 6. Moisture variation with depth andtime 20 15 Air temperature 10 Temperature [°C] 5 0 -5 -10 -15 15.3.02 31.3.02 16.4.02 2.5.02 18.5.02 3.6.02 Base course Subbase Subgrade March, 15th 2002
  • 7. FWD backcalculations Stiffnesses Base Course - Depth 0 - 20 cm 100000 10000E1 [MPa] 1000 100 1.jan 31.jan 2.mar 1.apr 1.maí 31.maí 30.jún 30.júl 29.ágú Subbase - Depth 20 - 60 cm 100000 E2 [MPa] 10000 1000 100 1.jan 31.jan 2.mar 1.apr 1.maí 31.maí 30.jún 30.júl 29.ágú
  • 8. FWD results & grav. moisture in 1999Section 1.4.1 25 500 Moisture in base course 2, d = 15 cm Moisture in subbase 1, d = 25 cm Moisture in subbase 2, d = 45 cm 20 400 Stiffness of base & subbase Gravimetric moisture cont. [%] Stiffness of subgrade Moduli, Mr [MPa] 15 300 10 200 5 100 0 0 1/3/99 1/4/99 1/5/99 1/6/99 1/7/99 1/8/99
  • 9. The APT device - The HVS NordicThe HVS Nordic is a mobile APTtest facility. Technical Specifications Test wheel: Dual or single wheel Load range: 30 – 110 kN Capacity: 150 000 passages/week Loading direction: single or bi-directional Max speed: 12 km/h Lateral wander: 0 – 0.7 m Pavement temp: 0 – 30°C Power: Diesel or electricity
  • 10. The Test Hall
  • 11. The instrumented test structures – SE06 0.0 Asphalt Concrete 4.8 3 x 3 Pressure cells Bituminous Base10.1 3 x 4 Vertical strain gauges Granular Base Course 4 x 2 Horizontal strains gauges20.9 1 x 3 Deflection sensors Granular Subbase35.1 Subgrade, sand Instrumentation Pressure cell Horizontal strain, longitudinal Horizontal strain, transversal Vertical strain Depth [cm] Vertical deflection
  • 12. Test procedure 0.0 Asphalt Concrete 4.8 Bituminous Base 10.1 Granular Base Course 20.9 Granular Subbase 35.1 Subgrade, sand 30 cm 35 cm 30 cm gwt Depth [cm]300 cm
  • 13. The Response Measurements 200 60 Vertical stress, σv [kPa] Vertical stress, σv [kPa] SPC-214 d = 17.5 cm 50 SPC-215 d = 44.0 cm 150 40 100 30 0.0 20 Asphalt Concrete 50 4.8 10 Bituminous Base 0 0 10.1 0 200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000 Granular Base Course Number of load repetitions, N Number of load repetitions, N 20.9 60 Granular SubbaseVertical stress, σv [kPa] 50 SPC-218 d = 60.0 cm 40 35.1 30 20 Subgrade, sand 10 30 cm 0 0 200000 400000 600000 800000 1000000 gwt 0.0040 of load repetitions, N Number 0.0010 Z-35 d = 10.1/20.7 65.1 Vertical strain, εv [-] Vertical strain, εv [-] 0.0008 Z-38 d = 20.7/35.3 0.0030 0.0006 0.0020 0.0004 0.0010 0.0002 0.0000 0.0000 0 200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000 Number of load repetitions, N Number of load repetitions, N Depth [cm] 0.0010 0.0010 Z-29 d = 35.3/50.5 Vertical strain, εv [-] Vertical strain, εv [-] 0.0008 0.0008 Z-30 d = 50.5/65.5 0.0006 0.0006 0.0004 0.0004 0.0002 0.0002 0.0000 0.0000 0 200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000 Number of load repetitions, N Number of load repetitions, N
  • 14. Response – Numerical simulation Stress σ z [kPa] 0 100 200 300 400 500 600 700 800 0.0 Asphalt Concrete 0 4.8 Bituminous Base 10.1 10 Granular Base Course 20.9 20 Granular SubbaseDepth [cm] 30 35.1 Calculated, dry 40 Calculated, wet Subgrade, sand Measurements, wet 30 cm 50 Measurements, dry gwt Vertical strain ε z [-] 60 65.1 -0.001 0.000 0.001 0.002 0.003 0 70 10 20 Depth [cm] Depth [cm] 30 40 Calculations, dry Calculation, wet 50 Measurements, dry Measurement, wet 60 70
  • 15. Permanent deformation prediction 10 0.0 Asphalt Concrete 4.8 Bituminous BasePermanent deformation, δ [mm] Sg measurements 10.1 8 Sg calculations Granular Base Course 20.9 6 Granular Subbase 2.0 4 35.1 Sb measurements Permanent deformation, δ [mm] Subgrade, sand Sb calculations 1.5 30 cm 2 2.0 gwt 0 BC measurements 65.1 Permanent deformation, δ [mm] 1.0 0 200000 400000 600000 800000 BC calculations 1000000 1.5 Number of passes, N 15 0.5 Rut measurements 1.0 Rut calculations Permanent deformation, δ [mm] Depth [cm] 0.0 0 200000 0.5 10 400000 600000 800000 1000000 Number of passes, N 0.0 0 200000 400000 5 600000 800000 1000000 Number of passes, N 0 0 200000 400000 600000 800000 1000000 Number of passes, N
  • 16. Conclusions• Water influences the structural behaviour of pavements.• A state of the art text book: Water in road structures – movement, drainage & effects has recently been published.• More knowledge need to be established regarding how water affects the pavement structure.• Water influence on pavement response and performance can be studies in field monitoring programs, lab experiments as well is full scale testing.• We need to take advantage of this to build up the knowledge of water impact on pavement structures.

×