Chapter 1 Introduction to Data Mining Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2009
Outline <ul><li>What Motivated Data Mining? </li></ul><ul><li>So, What Is Data Mining? </li></ul><ul><li>What kind of patt...
What Motivated Data Mining? <ul><li>Necessity is the mother of invention  – Plato </li></ul><ul><li>The Explosive Growth o...
What Motivated Data Mining? <ul><ul><li>Data collection and data availability </li></ul></ul><ul><ul><ul><li>Automated dat...
What Motivated Data Mining? <ul><li>We are drowning in data, but starving for knowledge! </li></ul>
Evolution of Database Technology <ul><li>1960s: </li></ul><ul><ul><li>Data collection, database creation, IMS and network ...
Evolution of Database Technology <ul><li>1990s:  </li></ul><ul><ul><li>Data mining, data warehousing, multimedia databases...
 
Outline <ul><li>What Motivated Data Mining? </li></ul><ul><li>So, What Is Data Mining? </li></ul><ul><li>What kind of patt...
So, What Is Data Mining? <ul><li>Data mining (knowledge discovery from data)  </li></ul><ul><ul><li>Extraction of interest...
So, What Is Data Mining? <ul><li>Alternative names </li></ul><ul><ul><li>Knowledge discovery (mining) in databases (KDD), ...
Knowledge Discovery (KDD) Process <ul><ul><li>Data mining—core of knowledge discovery process </li></ul></ul>Data Cleaning...
Knowledge Process <ul><li>Data cleaning  – to remove noise and inconsistent data </li></ul><ul><li>Data integration  – to ...
Knowledge Process <ul><li>Step 1 to 4 are different forms of data  preprocessing  </li></ul><ul><li>Although data mining i...
Knowledge Process <ul><li>Based on this view, the architecture of a typical data mining system may have the following majo...
 
Data Mining and Business Intelligence   Increasing potential to support business decisions End User Business Analyst Data ...
Data Mining: Confluence of Multiple Disciplines   Data Mining Database  Technology Statistics Machine Learning Pattern Rec...
Data Mining – on what kind of data? <ul><li>Relational Database </li></ul><ul><li>Data Warehouse (is a repository of infor...
 
Data Mining – on what kind of data? <ul><li>Advanced data and information systems </li></ul><ul><li>Object-oriented databa...
Outline <ul><li>What Motivated Data Mining? </li></ul><ul><li>So, What Is Data Mining? </li></ul><ul><li>What kind of patt...
What kind of patterns can we mined? <ul><li>In general, data mining tasks can be classified into two categories:  descript...
Mining frequent patterns, Associations, and Correlations (Ch4) <ul><li>Frequent patterns  are patterns that occur frequent...
Classification and Prediction (Ch 5) <ul><li>Classification  is the process of finding a MODEL that describes and distingu...
Cluster analysis (Ch 6) <ul><li>In general, the class label are not present in the training data simply they are not known...
Cluster analysis
Outlier Analysis (Ch 7) <ul><li>Most data mining methods discard outliers as noise or exceptions. </li></ul><ul><li>Howeve...
Upcoming SlideShare
Loading in...5
×

Introduction

785

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
785
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
34
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Transcript of "Introduction"

  1. 1. Chapter 1 Introduction to Data Mining Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2009
  2. 2. Outline <ul><li>What Motivated Data Mining? </li></ul><ul><li>So, What Is Data Mining? </li></ul><ul><li>What kind of patterns can we mined? </li></ul>
  3. 3. What Motivated Data Mining? <ul><li>Necessity is the mother of invention – Plato </li></ul><ul><li>The Explosive Growth of Data: from terabytes to petabytes </li></ul><ul><ul><li>Data collection and data availability </li></ul></ul><ul><ul><li>Major sources of abundant data </li></ul></ul>
  4. 4. What Motivated Data Mining? <ul><ul><li>Data collection and data availability </li></ul></ul><ul><ul><ul><li>Automated data collection tools, database systems, Web, computerized society </li></ul></ul></ul><ul><ul><li>Major sources of abundant data </li></ul></ul><ul><ul><ul><li>Business: Web, e-commerce, transactions, stocks, … </li></ul></ul></ul><ul><ul><ul><li>Science: Remote sensing, bioinformatics, scientific simulation, … </li></ul></ul></ul><ul><ul><ul><li>Society and everyone: news, digital cameras, YouTube </li></ul></ul></ul>
  5. 5. What Motivated Data Mining? <ul><li>We are drowning in data, but starving for knowledge! </li></ul>
  6. 6. Evolution of Database Technology <ul><li>1960s: </li></ul><ul><ul><li>Data collection, database creation, IMS and network DBMS </li></ul></ul><ul><li>1970s: </li></ul><ul><ul><li>Relational data model, relational DBMS implementation </li></ul></ul><ul><li>1980s: </li></ul><ul><ul><li>RDBMS, advanced data models (extended-relational, OO, deductive, etc.) </li></ul></ul><ul><ul><li>Application-oriented DBMS (spatial, scientific, engineering, etc.) </li></ul></ul>
  7. 7. Evolution of Database Technology <ul><li>1990s: </li></ul><ul><ul><li>Data mining, data warehousing, multimedia databases, and Web databases </li></ul></ul><ul><li>2000s </li></ul><ul><ul><li>Stream data management and mining </li></ul></ul><ul><ul><li>Data mining and its applications </li></ul></ul><ul><ul><li>Web technology (XML, data integration) and global information systems </li></ul></ul>
  8. 9. Outline <ul><li>What Motivated Data Mining? </li></ul><ul><li>So, What Is Data Mining? </li></ul><ul><li>What kind of patterns can we mined? </li></ul>
  9. 10. So, What Is Data Mining? <ul><li>Data mining (knowledge discovery from data) </li></ul><ul><ul><li>Extraction of interesting ( non-trivial, implicit , previously unknown and potentially useful) patterns or knowledge from huge amount of data </li></ul></ul><ul><ul><li>Data mining: a misnomer? </li></ul></ul>
  10. 11. So, What Is Data Mining? <ul><li>Alternative names </li></ul><ul><ul><li>Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc. </li></ul></ul>
  11. 12. Knowledge Discovery (KDD) Process <ul><ul><li>Data mining—core of knowledge discovery process </li></ul></ul>Data Cleaning Data Integration Databases Data Warehouse Knowledge Task-relevant Data Selection Data Mining Pattern Evaluation
  12. 13. Knowledge Process <ul><li>Data cleaning – to remove noise and inconsistent data </li></ul><ul><li>Data integration – to combine multiple source </li></ul><ul><li>Data selection – to retrieve relevant data for analysis </li></ul><ul><li>Data transformation – to transform data into appropriate form for data mining </li></ul><ul><li>Data mining </li></ul><ul><li>Evaluation </li></ul><ul><li>Knowledge presentation </li></ul>
  13. 14. Knowledge Process <ul><li>Step 1 to 4 are different forms of data preprocessing </li></ul><ul><li>Although data mining is only one step in the entire process, it is an essential one since it uncovers hidden patterns for evaluation </li></ul>
  14. 15. Knowledge Process <ul><li>Based on this view, the architecture of a typical data mining system may have the following major components: </li></ul><ul><ul><li>Database, data warehouse, world wide web, or other information repository </li></ul></ul><ul><ul><li>Database or data warehouse server </li></ul></ul><ul><ul><li>Data mining engine </li></ul></ul><ul><ul><li>Pattern evaluation model </li></ul></ul><ul><ul><li>User interface </li></ul></ul>
  15. 17. Data Mining and Business Intelligence Increasing potential to support business decisions End User Business Analyst Data Analyst DBA Decision Making Data Presentation Visualization Techniques Data Mining Information Discovery Data Exploration Statistical Summary, Querying, and Reporting Data Preprocessing/Integration, Data Warehouses Data Sources Paper, Files, Web documents, Scientific experiments, Database Systems
  16. 18. Data Mining: Confluence of Multiple Disciplines Data Mining Database Technology Statistics Machine Learning Pattern Recognition Algorithm Other Disciplines Visualization
  17. 19. Data Mining – on what kind of data? <ul><li>Relational Database </li></ul><ul><li>Data Warehouse (is a repository of information collected from multiple sources, stored under a unified schema, and usually resides at a single site) </li></ul><ul><li>Transactional Database </li></ul>
  18. 21. Data Mining – on what kind of data? <ul><li>Advanced data and information systems </li></ul><ul><li>Object-oriented database </li></ul><ul><li>Temporal DB, Sequence DB and Time serious DB </li></ul><ul><li>Spatial DB </li></ul><ul><li>Text DB and Multimedia DB </li></ul><ul><li>… and WWW </li></ul>
  19. 22. Outline <ul><li>What Motivated Data Mining? </li></ul><ul><li>So, What Is Data Mining? </li></ul><ul><li>What kind of patterns can we mined? </li></ul>
  20. 23. What kind of patterns can we mined? <ul><li>In general, data mining tasks can be classified into two categories: descriptive and predictive </li></ul><ul><ul><li>Descriptive mining tasks characterize the general properties of the data in database </li></ul></ul><ul><ul><li>Predictive mining tasks performs inference on the current data in order to make predictions </li></ul></ul>
  21. 24. Mining frequent patterns, Associations, and Correlations (Ch4) <ul><li>Frequent patterns are patterns that occur frequently in data </li></ul><ul><li>Association analysis: </li></ul><ul><ul><li>Example: buys(X,”computer”) => buys(X,”software”) [support = 1%, confidence = 50%] </li></ul></ul>
  22. 25. Classification and Prediction (Ch 5) <ul><li>Classification is the process of finding a MODEL that describes and distinguish data classes or concepts </li></ul>
  23. 26. Cluster analysis (Ch 6) <ul><li>In general, the class label are not present in the training data simply they are not known to begin with </li></ul><ul><li>The objects are clustered or grouped based on the principle of maximizing the intra-cluster similarity and minimizing the inter-cluster similarity </li></ul>
  24. 27. Cluster analysis
  25. 28. Outlier Analysis (Ch 7) <ul><li>Most data mining methods discard outliers as noise or exceptions. </li></ul><ul><li>However, in some application such as fraud detection, the rare event can be more interesting than regularly occurring ones </li></ul>
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×