Your SlideShare is downloading. ×
0
Download Intermediate_DATA_MINING.ppt
Download Intermediate_DATA_MINING.ppt
Download Intermediate_DATA_MINING.ppt
Download Intermediate_DATA_MINING.ppt
Download Intermediate_DATA_MINING.ppt
Download Intermediate_DATA_MINING.ppt
Download Intermediate_DATA_MINING.ppt
Download Intermediate_DATA_MINING.ppt
Download Intermediate_DATA_MINING.ppt
Download Intermediate_DATA_MINING.ppt
Download Intermediate_DATA_MINING.ppt
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Download Intermediate_DATA_MINING.ppt

309

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
309
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Data mining using SQL SERVER 2005 <ul><li>My name: ZULFIQAR SYED </li></ul><ul><li>Holds BSEE from Illinois Institute of Technology. </li></ul><ul><li>MCP in ASP.net (C#) </li></ul><ul><li>SQL SERVER, ASP.NET, C#, DATA MINING, ANALYSIS SERVICES. </li></ul><ul><li>CONTACT: </li></ul><ul><ul><li>[email_address] </li></ul></ul><ul><ul><li>HTTP://ZULFIQAR.TYPEPAD.COM </li></ul></ul>
  • 2. Prerequisites for data mining <ul><li>SQL SERVER </li></ul><ul><li>T-SQL </li></ul>
  • 3. Business Problem <ul><li>How to recommend movies based on customer demographics. </li></ul><ul><li>How to recommend other movies only based on movies already in shopping basket. </li></ul>
  • 4. Demonstration <ul><li>Simple DMX query </li></ul><ul><ul><li>Structure, </li></ul></ul><ul><ul><li>models </li></ul></ul><ul><ul><li>prediction Query </li></ul></ul><ul><li>Nested DMX query </li></ul><ul><ul><li>Structure </li></ul></ul><ul><ul><li>Nested models </li></ul></ul><ul><ul><li>nested query </li></ul></ul>
  • 5. Demonstration recap. <ul><li>Created/Trained/Queried </li></ul><ul><ul><li>simple case model. </li></ul></ul><ul><ul><li>Nested case model. </li></ul></ul><ul><ul><ul><li>Predict based on demographics. </li></ul></ul></ul><ul><ul><ul><li>Predict based on already bought items. </li></ul></ul></ul>
  • 6. Creating Structures/Models <ul><li>Create Structure </li></ul><ul><ul><li>Define key column. (normally primary key) </li></ul></ul><ul><ul><li>Define other influencing columns. </li></ul></ul><ul><ul><li>Define Nested Table </li></ul></ul><ul><ul><ul><li>Define key </li></ul></ul></ul><ul><ul><ul><ul><li>( NOT primary key) </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Depending on context </li></ul></ul></ul></ul><ul><li>Add one or more models </li></ul><ul><ul><li>Indicate prediction column(s). </li></ul></ul><ul><ul><li>Algorithm </li></ul></ul><ul><ul><ul><li>Parameters (Optimization) </li></ul></ul></ul>
  • 7. Structure/Model columns. <ul><li>Create Structure (Similar to creating OLTP tables) </li></ul><ul><ul><li>columns </li></ul></ul><ul><ul><ul><li>data types </li></ul></ul></ul><ul><ul><ul><ul><li>Long </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Double </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Text </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Date </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Table (for nested table) </li></ul></ul></ul></ul><ul><ul><ul><li>Content Types </li></ul></ul></ul><ul><ul><ul><ul><li>Continuous </li></ul></ul></ul></ul><ul><ul><ul><ul><li>discrete </li></ul></ul></ul></ul><ul><li>Add model(s) to structure </li></ul><ul><ul><li>column(s) to predict. </li></ul></ul><ul><ul><ul><li>Input (default) </li></ul></ul></ul><ul><ul><ul><li>Predict </li></ul></ul></ul><ul><ul><ul><li>Predict_only </li></ul></ul></ul>
  • 8. Prediction Query Basics <ul><li>Prediction Query basics (Similar to OLTP select) </li></ul><ul><ul><li>(psuedo code) </li></ul></ul><ul><ul><li>Select </li></ul></ul><ul><ul><ul><li>&lt;column list&gt; </li></ul></ul></ul><ul><ul><ul><li>From &lt;mymodel&gt; </li></ul></ul></ul><ul><ul><ul><li>Join &lt;myinput table&gt; </li></ul></ul></ul><ul><ul><ul><li>On </li></ul></ul></ul><ul><ul><ul><li>&lt;column list&gt; </li></ul></ul></ul><ul><ul><ul><li>Where </li></ul></ul></ul><ul><ul><ul><li>&lt;clause&gt; </li></ul></ul></ul><ul><li>Make cross services call </li></ul><ul><ul><li>OpenQuery (preferred, only specify datasource object) </li></ul></ul><ul><ul><li>OpenRowSet (expose credentials) </li></ul></ul><ul><li>Join </li></ul><ul><ul><li>Prediction </li></ul></ul><ul><ul><li>Natural Prediction Join </li></ul></ul>
  • 9. Algorithms <ul><li>Decision Trees </li></ul><ul><ul><li>Nodes </li></ul></ul><ul><ul><li>Split </li></ul></ul><ul><ul><li>Parameters </li></ul></ul><ul><ul><li>Nodes </li></ul></ul><ul><li>Association Rules </li></ul><ul><ul><li>Item Sets </li></ul></ul><ul><ul><li>Importance </li></ul></ul><ul><ul><li>Exist </li></ul></ul>
  • 10. Model Training <ul><li>Similar to Populating OLTP table. </li></ul><ul><li>Insert into model, select query </li></ul><ul><li>Shape operator for nested tables. </li></ul><ul><li>Skip operator for irrelevant primary key in nested table. </li></ul>
  • 11. Q and A <ul><li>Books </li></ul><ul><ul><li>Data mining Techniques (Berry/Linoff) </li></ul></ul><ul><ul><li>Data mining with Sql Server 2005. (Tang/MacLennan) </li></ul></ul><ul><li>Please fill out the evaluation form. </li></ul><ul><ul><li>NAME: ZULFIQAR SYED </li></ul></ul><ul><ul><li>SESSION: Relating SQL SERVER 2005 DATA MINING to Business Issues </li></ul></ul><ul><li>My contact information: </li></ul><ul><ul><li>[email_address] </li></ul></ul><ul><ul><li>Web log: HTTP://ZULFIQAR.TYPEPAD.COM </li></ul></ul><ul><li>These slides will be posted on my web log. </li></ul>

×