• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Data Mining Data Mining
 

Data Mining Data Mining

on

  • 894 views

 

Statistics

Views

Total Views
894
Views on SlideShare
894
Embed Views
0

Actions

Likes
0
Downloads
20
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Data Mining Data Mining Data Mining Data Mining Document Transcript

    • ¡  © £¨ ¦§ ¦¥¤ £¢ U3`RcbR dR1VX €€€ u Decision Support 89@6I 56BQPv8PE9 FPD u A5B89@6I 9QvpBFQQPoBQ8vI 89@6I 56BQPv8PE9 FPD u C98vF 56BQPBD6CCP u dR1VX knfm elik gjihf fgfe @9CG8P5P CF9I6QCvD u CFPD H6 C9yGQ u Data Mining @9F9QCv8D CF9I6QCvD u PQP@ I6FH ……… “’‘‰ˆ‡† ’†•“” ’”–‰ d™˜“— trshriq GF9E6DCB@ 9A@987654 &0 $  &0  „$ƒ) ‚ © £¨ ¦§ ¦¥¤ £¢ U3Ued2W2 WVTUTSR1 aU3`RcbR aU`RY2X WVTUTSR1 dR1VX €€€ u Decision Support 56BQP5P8yx9 u 56BQPwB8PvCBE u A5B889@6I CBCG8P5P u 56BQPv8PE9 u A5BF9QCv8D u 2321 56BQPDBHBCCP8Df u dR1VX tgshriq pi hg Data Mining PQP@ I6FH GF9E6DCB@ 9A@987654 © £¨ ¦§ ¦¥¤ £¢ !0))(' &%$ #     # "   !      
    • v  ! 0$ !u ' t " v  0$ u ' t " }|{|{z x yxw y…„„ƒ‚ |{ €{ ~w ? © £¨ ¦§ ¦¥¤ £¢  !   †  ! 0$ !u ' t " ! Integrating DM and DS through "Decision Support for Data Mining" "Data Mining for Decision Support" Models Data Decision Data Decision Mining Support Mining Support Data Expertise Data Decision Mining Support Incorporating DM methods into DSS, e.g.: Supporting decisions in the DM process, • MS OLE DB for DM • MS Analysis Services e.g.: • Improving models by data analysis –ROC methodology Model –Meta-learning and multi-strategy learning Model Sequential Application: DM & DS in Data Pre-Processing DM, then DS Data Decision Data Decision Mining Support Mining Support Model Data Model © £¨ ¦§ ¦¥¤ £¢ $0( ! 0$ !‡ $0 0$ © £¨ ¦§ ¦¥¤ £¢ s 
    • ˆ  © £¨ ¦§ ¦¥¤ £¢ False positive rate 100% 80% 60% 40% 20% 0% 0% 20% ñðïî ò ìë ÖÕÔ Ó 40% ñðïî í ìë ÖÕä Ó classifier 2 classifier 1 ¨›• Èê ÏÉË éèç Ä 60% True positive rate ÞÚ Ø ÚÜÛÚ Ø ß ÖÕä Ó 80% ÞÚæ Ø ÚÜÛÚå Ø × ÖÕä Ó 100% ¹ ™“žÑ Ò ¹ ¨–´ “¨˜›¦Ñ Ð ÈÍ ÏÆ ÈÎÌÍÌËÊ É ÈËã Ïâ Ä 100 70 30 50 50 0 Negative examples 50 20 30 Positive examples ÞÚá Ø ÚÜÛÚà Ø ß ÖÕÔ Ó Predicted negative Predicted positive 100 50 50 ÞÚÝ Ø ÚÜÛÚÙ Ø × ÖÕÔ Ó Classifier 2 50 40 10 Negative examples 50 10 40 Positive examples Predicted negative Predicted positive ¹ ¨–´Ñ Ò ¹ ¨–´ “µ ”Ñ Classifier 1 Ð ÈÍ ÏÆ ÈÎÌÍÌËÊ É ÈÇÆÅ Ä $% & $% )& à÷öîõä ÖóôóÕ © £¨ ¦§ ¦¥¤ £¢ ¨“© µª ‘ ¸¹ ™¹ “ ¨¨“ª– ´  ¤ “•” žŸ•”ŸÁ ” –´´µ¨ ž–Ÿ¨Ÿª“¤ y…„„ƒ‚ |{ €{ ~w }|{|{z x yxw À" 0 ¿ '¾ © £¨ ¦§ ¦¥¤ £¢ ¨ž–Ÿ¨ž“’Ÿ— ’“˜·– ´ ”ž“ “¦¦Ÿ— ™žŸ “—Ÿ¨ž–ª Ž ½¼»³ žŸ Ÿº£¤ ¸¹ ™¹ “ ¸ ¨˜“—–’ •™µ– •” ™žŸžŸ·’–ª Ž ²|{ yx {±„„x ±~±±x…x„¯ Œ‚w ¶|x zwŠ ‰  ¤  –¦ ™žŸ¨¨“ª– ´œ“ ´ ›”›— žŸ ¨˜“—–’ ™žŸ¨µ Ž ­ ²|{ yx {±„„x ±x{ y|~ƒ°~ €¯ Œzw |~® y ‚wŠ ‰ •ª›– ´´› —ž›³ œ”§œ¨ž–Ÿ¨Ÿª“¤ Ž ­ ²|{ yx {±„„x ±x{ y|~ƒ°~ €¯ Œ‚w |~® y zwŠ ‰ ¬›”›— ’– ¦« ž–Ÿ¨Ÿ©“ ˜“—–’ Ž ¨“ªŸ© “¡ ¨Ÿ¨š˜›ž§ ¡  Ž  ¤  –¦ ¥¤ £¢  ¡  Ž  Œ‚w … ‹ zwŠ ‰ ™žŸž ›“˜œ›”“’ Ž š™–˜–—–•”“’ ‘ Ž  Œzw … ‹ ‚wŠ ‰ '  ' # "    " 
    • ƒƒ(ú ‚$ û% à$ú ù ( ‚$ û % $ 100% 80% true positive rate 60% 40% Confirmation rules 20% W RAcc CN2 0% 0% 20% 40% 60% 80% 100% false positive rate © £¨ ¦§ ¦¥¤ £¢ ƒƒ ú  àú ù ƒƒ(ú ‚$ û% à$ú ù 100% 80% true positive rate 60% 40% 20% 0% 0% 20% 40% 60% 80% 100% false positive rate © £¨ ¦§ ¦¥¤ £¢ &ú  & 0$ ¿&& ƒ% 0$ ¿ && % 100% FPcost 1 = 80% FNcost 2 true positive rate 60% Neg 40% =4 Pos 20% slope = 4 2 = 2 0% 0% 20% 40% 60% 80% 100% false positive rate © £¨ ¦§ ¦¥¤ £¢ ø 
    • ü  © £¨ ¦§ ¦¥¤ £¢  & $ $ " ' 0 ¿" & û$ ƒ$#" „ À' 0 ¿ "¾ © £¨ ¦§ ¦¥¤ £¢ ìëðñð¢óÖ õó§ë¦ Ó ñóöð¢Öóÿ ñðñ¥õîì¤ £ Öó¢Öóÿ ¡ ÿ ÿþ Ó ý ¨¨“ª– ´ ¡¤ “•” –”žŸ ¨—–•”“’  ¤ ™žŸªµ—– ”ž» y…„„ƒ‚ |{ €{ ~w }|{|{z x yxw À' 0 ¿ "¾ © £¨ ¦§ ¦¥¤ £¢ false positive rate 100% 80% 60% 40% 20% 0% 0% slope = 4 8 = .5 20% Pos =4 40% Neg 60% true positive rate FNcost 80% 8 = FPcost 1 100% 0$ ¿ && % 0$ ¿&& ƒ%  & &ú
    • ¨  © £¨ ¦§ ¦¥¤ £¢ V ¨š›Á ”ž“ “¦¦Ÿ— žŸ —“´–˜“©“— ¨˜“—–’œ·µ¨ ™žŸžŸ·’–ª ý ytawˆ‡ `† … „ V ½¼»³ —ž› º£¤ š· ¬¨«˜“—–’ ¦– ”ž“’´–˜“©“— ˜“˜˜› ›´ ýb tbb u  ƒ q V ” “´d“ “•” š· —“žŸ¦“ š˜”ž“µ‚“¨·µ¨ ˜“—–’ —“´–˜“©“—œ½¼»³ ýb wu t € V ž–Ÿ¨Ÿ© “´µ¨ ” “´d“  “—žµ ›”›— ’– ¦ ý ytxw vu tsr q p f V ›”›— ’– ¦ ý cba ` ihg e W V “¨Ÿ” “´d“ ’– ¦ ý cba ` YX U TCSRQP EIH GC FEDCB © £¨ ¦§ ¦¥¤ £¢ Model (Zupan & Bohanec) ˜“—–’ “”µ·Ÿ ””›œŸ”˜µ’ ˜›ªŸ•ª › “Ÿ• “©Ÿ”›”Ÿ˜›µA 98 76 @ 54 y…„„ƒ‚ |{ €{ ~w }|{|{z x yxw Expertise Data  © „ À' # "¾ © £¨ ¦§ ¦¥¤ £¢ $ #"! y…„„ƒ‚ |{ €{ ~w }|{|{z x yxw #32 '1 #0 )( &'&%   „  © „ À' # "¾ ¾
    • ‰  © £¨ ¦§ ¦¥¤ £¢ Model y…„„ƒ‚ |{ €{ ~w }|{|{z x yxw “ ' $ " &0 À' $ú ! " !&0’¾ „ % )) $($' „ ! %ƒ)) ‘ ƒ  !$($' © £¨ ¦§ ¦¥¤ £¢ ¨“”µ·Ÿ ””› —“”› “ž“” ¨“”µ·Ÿ ””› ”µ´ž» of pulse sensation changes Deformities Symptoms Amputations Ulcers Absence Loss of prot. Other Tests Present status History RISK “ “ &&$%0•–$0• ! ! !   À" $ú ! '¾ © £¨ ¦§ ¦¥¤ £¢ Model }|{|{z x yxw y…„„ƒ‚ |{ €{ ~w “ " $ ' À" $ú ! ' !&0’¾ &0 ’ % )) $($' „ ! %ƒ)) ‘ ƒ  !$($' „
    • —  © £¨ ¦§ ¦¥¤ £¢ ™ $ #"! ’ $ #"! y…„„ƒ‚ ˜ $ #"! |{ €{ ~w }|{|{z x yxw “ ' $ &$  " $ ) (" ' $ú ! &ƒ$# " $ƒ) !ƒ(" „& % )) $ 0 • „& ! %ƒ)) ‘ ƒ$ƒƒ 0 • © £¨ ¦§ ¦¥¤ £¢ ‹wŠ ru ‡ ~vnux†… {u ruq on„qru{ƒ}r‚t €p rq ~ruq o}|{ ozruy xwvupt srqrqp n onm xwvup ruqzq}wm ‰xnˆ ru ‡ ‡ zxxwƒ o{u††| ruqzq}wm ‘õî ôó ìŽ îõŒ f e fe jldk jighgfefed © £¨ ¦§ ¦¥¤ £¢ ™ $ #"! ˜ $ #"! y…„„ƒ‚ }|{|{z |{ €{ ~w x yxw “ ' $ " À' $ú ! " !&0’¾ &0 ’ % )) $($' „ ! %ƒ)) ‘ ƒ  !$($' „
    • ˜ —E–•CP” › ” RTE—EœES›™š ™S—EDQ™š GC TCSR™SDEP” ±® ‚ ¢…x¡{…  ±® ‚ ®}{£ Ÿ  ž Ÿ ¦ ¥ ¤ § Ü Öë Ù ¨ñóôîÖ© ¨ VVV à Öë æ ¨ñóôîÖ© ¨ª §ó©ìëõë֐ ¨« óôîõ ñõðî­ ¨® ìëëñ ñõðî­ ¨¬ |{ y{¶~…  © £¨ ¦§ ¦¥¤ £¢  # ‘ !   %$# % ‘ „ ! 0$ !u ' t " ! &'&% x³~ ² zw ±°¯£ zw final achievement GA 1st grade c5 <=1 >1 c1 LEGEND: for lang 8th grade 2 Slovene gen ach 7th grade GA 1st grade - general achievement of the first high c2 school grade <= 3 >3 Slovene - mark of subject Slovene language regular enrol History - mark of subject History GA 1st grade 5 for lang Physics - mark of subject Physcis c7 age enrol - age at enrolment (in months) <= 2 >2 unex ab 3rd sem - unexcused absence in the third c3 semester (hours) History 4 citizenshi p Physics <= 2 >2 4 { µ´w ‚w c6 birth state gen ach prim sch c4 <= 1 >1 math 8th grade age enrol unex abs 3rd sem phys 8th grade <= 180 > 180 <= 0 >0 4 1 4 2 © £¨ ¦§ ¦¥¤ £¢ &00 ¶  „ ! %ƒ)) ‘ ƒ$ƒƒ 0 • & 00  % $ 0 • Models for Building Construction Models for Client Value Project Attributes Building Feasibility Decision Support Data Mining Building Feasible Designs to Building maximise Designs Client Value Value Feasible Shape Zone Zone lity Size ua Q ð¸ñ»ëÖôñº öðÖ¹ ·öóìî÷ëŒ ë¸Öîþ ·óõ¥ëþ ó¢óôÿ © £¨ ¦§ ¦¥¤ £¢ “ 
    • ¼¡   © £¨ ¦§ ¦¥¤ £¢ ìëðôîÏð§Öî§ìîôñ Ó ñó÷öîë֐î §ìî ñóð©ëõë§ë÷ôó¦ ì릦ëö Ó ìëðôîÖ©óôìð ÿÒÓþÒ ­ë ѸÖë»ó¦îÖ­Ð ìëðôîÏðõî¦Öë­ Ó  €|{ y€~ƒ° |~„Î ‰ ÂÁ ÍËÌ ÆÁ Ó ÆÁ ËÊÉÈ ÇÂÁ Ó ÂÁ ËÊÉÈ ÇÆÁ Ó ÂÁ ÅÄà ÆÁ Ó ÆÁ ÅÄà ÂÁ Ó  €|{ yx|{À¡  ±x {„ ¢± ‰ x~…x ® …x~ €~… }|{„±~ ¿~¶ ¶|x ¾~° ‰ ¥Öîôìó¦óõñ Ó ¥Öîôìó¦óõ¦ëö Ó ~…x €~® x…„„x ‚w ½ zw ‰  &( % &(ƒ%