0
Social Information Processing March 26-28, 2008 AAAI Spring Symposium Stanford University 010011011 01100001 11110 011 010...
Definition <ul><li>Social Information Processing is  </li></ul><ul><ul><li>an activity through which collective human acti...
The Social Web <ul><li>The Social Web is a collection of technologies, practices and services that turn the Web into a pla...
Social Web features <ul><li>Users create content </li></ul><ul><ul><li>Articles, opinions, creative products </li></ul></u...
Social Web is interesting <ul><li>Social Web as a complex dynamical system </li></ul><ul><ul><li>Complex collective behavi...
Social Web is interesting  <ul><li>Social Web as a knowledge-generating system </li></ul><ul><ul><li>Users express persona...
Social Web is interesting <ul><li>Social Web as a problem-solving system </li></ul><ul><ul><li>By exposing human activity,...
Social Web is interesting  <ul><li>Lots of data for empirical studies </li></ul><ul><ul><li>Large-scale experimenation </l...
Social Web is challenging <ul><li>Social Web is enormous and growing rapidly </li></ul><ul><ul><li>Some popular sites have...
Social Web is challenging  <ul><li>Social Web is highly dynamic </li></ul><ul><ul><li>New users and content </li></ul></ul...
Social Web is challenging  <ul><li>Social Web is highly heterogeneous </li></ul><ul><ul><li>Variety of content and media t...
Social Web is challenging  <ul><li>Social Web is highly diverse </li></ul><ul><ul><li>User participation has power law dis...
Social Web is challenging <ul><li>Social Web as a computational platform </li></ul><ul><li>Prediction </li></ul><ul><li>In...
Schedule - Wednesday <ul><li>9:00-9:15  Welcome </li></ul><ul><li>9:15-10:30am Invited talk  </li></ul><ul><li>Bernardo Hu...
Schedule - Thursday <ul><li>9:00-10:30am Invited talk  </li></ul><ul><li>Brian Skyrms  Signaling Games </li></ul><ul><li>1...
Schedule - Friday <ul><li>9-10:30am   Technical Session: Moderator Chris Diehl </li></ul><ul><li>Dennis Wilkinson   Multip...
Posters <ul><li>John Nicholson  </li></ul><ul><ul><li>Collaborative Route Information Sharing for the Visually Impaired </...
Thanks to <ul><li>Organizing committee </li></ul><ul><ul><li>Kristina Lerman, David Gutelius, Bernardo Huberman, Srujana M...
Upcoming SlideShare
Loading in...5
×

Social Information Processing (Tin180 Com)

771

Published on

http://tin180.com - Trang tin tức văn hóa lành mạnh

Published in: Technology, Business
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
771
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
5
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide
  • Bernardo Huberman – Social Dynamics in the Age of the Web Brian Skyrms - Signaling Games: Some Dynamics of Evolution and Learning Riley Crane - Viral, Quality, and Junk Videos on YouTube Matt Smith - Social Capital in the Blogosphere Tad Hogg - Solving the organizational free riding problem with social networks Dan Cosley - Understanding and Exploiting Social Interaction Data Cosma Shalizi - Measuring Shared Information and Coordinated Activity in a Network Elizeu Santos-Neto - Content Reuse and Interest Sharing in Tagging Communities
  • Yi-Ching Huang - You Are What You Tag Julia Stoyanovich - Leveraging Tagging to Model User Interests in del.icio.us Steve Whittaker - Temporal Tagging Yu Zhang - Mining Target Marketing Groups From Users’Web of Trust on Epinions Sihem Amer-Yahia - Reviewing the Reviewers Georg Groh - Implicit Social Network Construction and Expert User Determination in Web Portals Ed Chi - Augmented Social Cognition Peter Pirolli - A Probabilistic Model of Semantics in Social Information Foraging Anon Plangrasopchok - On constructing shallow taxonomies from social annotations Gustavo Glusman - Users, photos, groups, words: analyzing mixed networks on flickr
  • Luc Steels - Social tagging in community memories Cosma Shalizi - Social Media as Windows on the Social Life of the Mind John Nicholson - The Blind Leading the Blind Dan Cosley (Cornell) General Purpose Transitive Trust Inference System for Social Networks
  • Transcript of "Social Information Processing (Tin180 Com)"

    1. 1. Social Information Processing March 26-28, 2008 AAAI Spring Symposium Stanford University 010011011 01100001 11110 011 0101110011010 0111011010 001001 01111 00001001111010 011011010101 01001 01111 01100001001111010 100101111 00110 1001 10110101110100100 1010100100 1101 0010 00010111010011
    2. 2. Definition <ul><li>Social Information Processing is </li></ul><ul><ul><li>an activity through which collective human actions organize knowledge </li></ul></ul><ul><ul><li>process which allows us to collectively solve problems far beyond any individual’s capabilities </li></ul></ul><ul><ul><li>a new information processing paradigm enabled by the Social Web </li></ul></ul>
    3. 3. The Social Web <ul><li>The Social Web is a collection of technologies, practices and services that turn the Web into a platform for users to create and use content in a social context </li></ul><ul><ul><li>Authoring tools  blogs </li></ul></ul><ul><ul><li>Collaboration tools  wikis, Wikipedia </li></ul></ul><ul><ul><li>Tagging systems  del.icio.us, Flickr, CiteULike </li></ul></ul><ul><ul><li>Social networking  Facebook, MySpace, Essembly </li></ul></ul><ul><ul><li>Collaborative filtering  Digg, Amazon, Yahoo answers </li></ul></ul>
    4. 4. Social Web features <ul><li>Users create content </li></ul><ul><ul><li>Articles, opinions, creative products </li></ul></ul><ul><li>Users annotate content </li></ul><ul><ul><li>Metadata (e.g., tags) </li></ul></ul><ul><ul><li>Ratings </li></ul></ul><ul><li>Users create connections </li></ul><ul><ul><li>Between content and metadata </li></ul></ul><ul><ul><li>Between content or metadata and users </li></ul></ul><ul><ul><li>Among users (social networks) </li></ul></ul><ul><li>Users interact </li></ul><ul><ul><li>Discuss and rate content </li></ul></ul>
    5. 5. Social Web is interesting <ul><li>Social Web as a complex dynamical system </li></ul><ul><ul><li>Complex collective behavior emerges from actions taken by many users </li></ul></ul><ul><ul><ul><li>Patterns emerge on large scale </li></ul></ul></ul><ul><ul><li>Variety of interactions between users </li></ul></ul><ul><ul><ul><li>Coordination, collaboration, conflict … </li></ul></ul></ul><ul><ul><ul><li>Network vs environment-mediated </li></ul></ul></ul>
    6. 6. Social Web is interesting <ul><li>Social Web as a knowledge-generating system </li></ul><ul><ul><li>Users express personal knowledge (through articles, tags, links, …) or modify knowledge expressed by others </li></ul></ul><ul><ul><ul><li>Tailor information to individual user … </li></ul></ul></ul><ul><ul><ul><ul><li>Personalization and recommendation </li></ul></ul></ul></ul><ul><ul><ul><li>… or combine users’ knowledge to create a knowledgebase </li></ul></ul></ul><ul><ul><ul><ul><li>Wikipedia, wikis </li></ul></ul></ul></ul><ul><ul><ul><ul><li>folksonomy </li></ul></ul></ul></ul><ul><ul><ul><ul><li>FAQs, … </li></ul></ul></ul></ul>
    7. 7. Social Web is interesting <ul><li>Social Web as a problem-solving system </li></ul><ul><ul><li>By exposing human activity, Social Web allows users to harness the power of collective intelligence to solve problems </li></ul></ul><ul><ul><ul><li>Manage the commons </li></ul></ul></ul><ul><ul><ul><li>Help the visually impaired get around in new places </li></ul></ul></ul><ul><ul><ul><li>Figure out who to trust </li></ul></ul></ul>
    8. 8. Social Web is interesting <ul><li>Lots of data for empirical studies </li></ul><ul><ul><li>Large-scale experimenation </li></ul></ul><ul><ul><li>Social Web is amenable to analysis </li></ul></ul><ul><ul><li>Design systems for optimal performance </li></ul></ul>
    9. 9. Social Web is challenging <ul><li>Social Web is enormous and growing rapidly </li></ul><ul><ul><li>Some popular sites have >1 million users and >1 billion objects </li></ul></ul><ul><ul><li>2G/day of “authored” content </li></ul></ul><ul><ul><li>10-15G/day of user generated content [From Andrew Tomkins, Yahoo! Research] </li></ul></ul><ul><li>Need new computational techniques to process massive data </li></ul>
    10. 10. Social Web is challenging <ul><li>Social Web is highly dynamic </li></ul><ul><ul><li>New users and content </li></ul></ul><ul><ul><li>Links are created and destroyed </li></ul></ul><ul><li>Need new computational approaches to deal with dynamic data </li></ul>
    11. 11. Social Web is challenging <ul><li>Social Web is highly heterogeneous </li></ul><ul><ul><li>Variety of content and media types </li></ul></ul><ul><ul><li>Variety of information domains </li></ul></ul><ul><li>Needs to be even more heterogeneous </li></ul><ul><ul><li>Ability to express knowledge at different granularity levels </li></ul></ul><ul><ul><ul><li>Micro-tagging: tag data within pages </li></ul></ul></ul><ul><ul><li>Ability to express more complex knowledge </li></ul></ul><ul><ul><ul><li>Specify relations: e.g., semantics of links </li></ul></ul></ul><ul><li>Need algorithms to combine heterogeneous data </li></ul>
    12. 12. Social Web is challenging <ul><li>Social Web is highly diverse </li></ul><ul><ul><li>User participation has power law distribution </li></ul></ul><ul><ul><li>User expertise has power law distribution </li></ul></ul><ul><li>Need approaches that go beyond ‘wisdom of crowds’ to combine knowledge from users </li></ul><ul><ul><li>Averaging is not always the best solution </li></ul></ul><ul><ul><li>How do we best exploit diversity? </li></ul></ul><ul><li>Understand incentives for user participation </li></ul><ul><ul><li>Methods for improving content/metadata quality </li></ul></ul>
    13. 13. Social Web is challenging <ul><li>Social Web as a computational platform </li></ul><ul><li>Prediction </li></ul><ul><li>Innovation and discovery </li></ul>
    14. 14. Schedule - Wednesday <ul><li>9:00-9:15 Welcome </li></ul><ul><li>9:15-10:30am Invited talk </li></ul><ul><li>Bernardo Huberman Social Dynamics in the Age of the Web </li></ul><ul><li>10:30-11am Break </li></ul><ul><li>11-12:30pm Technical Session: Moderator Cosma Shalizi </li></ul><ul><li>Ed Chi Augmented Social Cognition </li></ul><ul><li>Tad Hogg Solving the organizational free riding problem </li></ul><ul><li>Riley Crane Viral, Quality, and Junk Videos on YouTube </li></ul><ul><li>12:30-2pm - Lunch </li></ul><ul><li>3:30-4pm - Break </li></ul><ul><li>2-3:30pm Technical Session: Moderator Kristina Lerman </li></ul><ul><li>Yi-Ching Huang You Are What You Tag </li></ul><ul><li>Julia Stoyanovich Leveraging Tagging to Model User Interests in del.icio.us </li></ul><ul><li>Steve Whittaker Temporal Tagging </li></ul><ul><li>4-5:30pm Technical Session: Moderator David Gutelius </li></ul><ul><li>Georg Groh Implicit Social Network Construction in Web Portals </li></ul><ul><li>Elizeu Santos-Neto Content Reuse and Interest Sharing </li></ul><ul><li>Matt Smith Social Capital in the Blogosphere: A Case Study </li></ul><ul><li>6-7pm – AAAI Reception </li></ul>
    15. 15. Schedule - Thursday <ul><li>9:00-10:30am Invited talk </li></ul><ul><li>Brian Skyrms Signaling Games </li></ul><ul><li>10:30-11am Break </li></ul><ul><li>11-12:30pm Technical Session: Moderator Ed Chi </li></ul><ul><li>John Nicholson The Blind Leading the Blind </li></ul><ul><li>Cosma Shalizi Social Media as Windows on the Social Life of the Mind </li></ul><ul><li>Luc Steels Social tagging in community memories </li></ul><ul><li>12:30-2pm - Lunch </li></ul><ul><li>2-3:30pm Technical Session: Moderator Tina Eliassi-Rad </li></ul><ul><li>Aram Galstyan Influence Propagation in Modular Networks </li></ul><ul><li>Adam Anthony Generative Models for Clustering: The Next Generation </li></ul><ul><li>Peter Pirolli A Probabilistic Model of Semantics </li></ul><ul><li>3:30-4pm - Break </li></ul><ul><li>4-5:30pm Technical Session: Moderator Tad Hogg </li></ul><ul><li>Hak-Lae Kim Building a Tag Sharing Service with the SCOT Ontology </li></ul><ul><li>Yu Zhang Mining Target Marketing Groups From Users’Web of Trust </li></ul><ul><li>Sihem Amer-Yahia Reviewing the Reviewers </li></ul><ul><li>5:45-7:30pm – AAAI Plenary Session </li></ul>
    16. 16. Schedule - Friday <ul><li>9-10:30am Technical Session: Moderator Chris Diehl </li></ul><ul><li>Dennis Wilkinson Multiple Relationship Types in Online Communities and Social Networks </li></ul><ul><li>Tina Eliassi-Rad Finding Mixed-Memberships in Social Networks </li></ul><ul><li>10:30-11am - Break </li></ul><ul><li>11-12:30pm - Wrap up – Open to all </li></ul>
    17. 17. Posters <ul><li>John Nicholson </li></ul><ul><ul><li>Collaborative Route Information Sharing for the Visually Impaired </li></ul></ul><ul><li>Tad Hogg and Gabor Szabo </li></ul><ul><ul><li>Diversity of Online Community Activities </li></ul></ul><ul><li>Cosma Shalizi, Kristina Klinkner and Marcelo Camperi </li></ul><ul><ul><li>Measuring Shared Information and Coordinated Activity in a Network </li></ul></ul><ul><li>Anon Plangprasopchok and Kristina Lerman </li></ul><ul><ul><li>On constructing shallow taxonomies from social annotations </li></ul></ul><ul><li>Gustavo Glusman </li></ul><ul><ul><li>Users, photos, groups, words: analyzing mixed networks on flickr </li></ul></ul><ul><li>Praveen Paritosh </li></ul><ul><ul><li>Freebase </li></ul></ul>
    18. 18. Thanks to <ul><li>Organizing committee </li></ul><ul><ul><li>Kristina Lerman, David Gutelius, Bernardo Huberman, Srujana Merugu </li></ul></ul><ul><li>Program committee </li></ul><ul><ul><li>Jim Blythe, Arindam Banerje, Sugato Basu, Jack Park, Scott Golder, Paolo Massa, Cosma Shalizi, Ed Chi, Tad Hogg, Chris Diehl, Sihem Amer-Yahia </li></ul></ul><ul><li>Participants </li></ul>
    1. A particular slide catching your eye?

      Clipping is a handy way to collect important slides you want to go back to later.

    ×