Your SlideShare is downloading. ×
Table of Contents:
Letter of Transmittal…………………………………………………………                              i
Table of Contents……………………………...
Project Overview:

The purpose of this report is to show the results obtained for the styrene monomer unit designed
to obt...
unit operations. The major product of this reaction is propylene oxide23. In order to increase
production of styrene, prop...
Price Histories and Trends
Styrene prices have increased steadily over the last few years. From the price plot of styrene
...
However, as a technology leader the Innovative Chemical Company wanted to refrain from
selling byproducts on the open mark...
Purification and Recovery Section
        1. Since styrene polymerizes in the liquid phase, an inhibitor is used and its
 ...
V-101           V-102    P-101 A/B            P-102 A/B P-103 A/B T-101            E-101           E-102       V-105      ...
P 108 A/B           E-108         R-101              E-119              P 109 A/B             E-120            R-102      ...
E-115        V-104    V-109     T-106              E-116     E-117    V-108                             P-118 A/B   P-119 ...
Table 3a: Input/Output Stream Table for PFD
                                                 Input Streams                ...
Table 3b: Stream Tables for PFD shown in Figure 1

Stream No.                     1             2           3          4  ...
Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d)

Stream No.                      9           10          11    ...
Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d)

Stream No.                     18            19           20  ...
Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d)

Stream No.                     26           27           28   ...
Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d)

      Stream No.                     34           35          ...
Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d)

      Stream No.                     42           43          ...
Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d)

Stream No.                   50           51            52    ...
Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d)

Stream No.                   59           60            61    ...
Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d)

Stream No.                   68             69             70 ...
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Market Analysis
Upcoming SlideShare
Loading in...5
×

Market Analysis

3,012

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
3,012
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
92
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Market Analysis"

  1. 1. Table of Contents: Letter of Transmittal………………………………………………………… i Table of Contents…………………………………………………………… ii Project Overview…………………………………………………………… 1 Design Basis/Market Analysis………………………….…………………… 1 Process Flow Diagram with Stream Tables………………………………….. 6 Process Description…………………………………………………………… 22 Technical Discussion………………………………………………………… 23 Economic Analysis…………………………………………………………… 28 Conclusions…………………………………………………………………… 37 Recommendations…………………………………………………………… 37 Acknowledgements…………………………………………………………… 38 References…………………………………………………………………… 38 Appendix A: Production/Consumption Analysis…………………………… 39 Appendix B: World Consumption and Capacity for Styrene in 2001……… 40 Appendix C: U.S. Production and Sales of Styrene (Product Life Cycle)… 41 Appendix D: Price Trends and Forecast……………………………………… 42 Appendix E: Health and Safety Precautions………………………………… 44 Appendix F: Equipment Design Parameters………………………………… 47 Appendix G: Sizing of Equipment…………………………………………… 49 Appendix H: CSTR Design and Optimization……………………………… 50 Appendix I: PBR Design and Optimization………………………………… 53 Appendix J: Environmental Discharge Calculations………………………… 59 Appendix K: Material Balance and Energy Balance………………………… 60 Appendix L: Cash Flow Analysis…………………………………………… 61 Appendix M: Sensitivity Analysis Plots……………………………………… 62 Appendix N: ChemCAD Output……………………………………………… 64 ii
  2. 2. Project Overview: The purpose of this report is to show the results obtained for the styrene monomer unit designed to obtain high purity styrene as a raw material for the new HYPERCLEARTM facility. The HYPERCLEARTM polymer represents a significant advance in polymer technology and requires a minimum styrene content of 99.9 mol %. It will require a production of 400 million lbs per year by the end of a four-year introduction period. Initially, a market study was conducted to determine the feasibility of selling excess styrene on the open market. From this study the reaction path was chosen and developed as well as an overall plant capacity for the styrene monomer to be produced. Next, a preliminary design of the styrene monomer unit was developed. The design was broken into three sections: feed preparation, reaction, and purification and recovery. Finally, a full economic analysis of the unit was conducted. The final result is a plant producing 1.1 billion pounds of styrene per year with an overall capital investment of $176 million and a net present value over ten years of $297 million. This gives an IRR of 39.64%, well over the required MARR of 20%. The discounted payback period is 3.76 years. The overall selectivity is 72% and overall conversion is 89%. Design Basis: The design basis for the styrene monomer unit was determined based on a market analysis of the current status of the styrene industry (current technology, main producers, and market growth), market position upon entry for the Innovative Chemical Company, production capacity, and possible recovery and sale of byproducts. Market Analysis Competitive Technology Summary Current producers of styrene use either the dehydrogenation or the co-production propylene oxide process routes. The dehydrogenation process accounts for 90%, and the propylene oxide process route accounts for 10% of the total world production of styrene23. Dehydrogenation The dehydrogenation of ethylbenzene is an endothermic reaction that takes place on a promoted iron oxide-potassium catalyst in a fixed bed reactor in the presence of steam 23. It is highly temperature dependent with typical operating condition of commercial reactors being 620ºC 30. This process is limited by thermodynamic equilibrium. The competing thermal reactions degrade ethylbenzene to benzene and carbon23. But the largest yield loss of styrene is due to the catalytic reactions producing toluene. Conversion of ethylbenzene varies but it is usually about 65% overall. Propylene Oxide- Styrene Monomer Co-production (PO/SM) The alternative route to commercially produce styrene is through the co-production of propylene oxide. The typical production of styrene using the propylene oxide process involves eight major 1
  3. 3. unit operations. The major product of this reaction is propylene oxide23. In order to increase production of styrene, propylene oxide production must also be increased. The propylene oxide process has other disadvantages aside from poor styrene product selectivity. The formation of styrene yields additional oxygenated byproducts which are not easily separated from the final styrene product23, 30. Other Technologies Technologies producing styrene from other raw materials are being investigated. One alternative route to produce styrene, first developed by Dow Chemicals, is by converting butadiene in the crude C4 stream. Dow Chemicals claims that this process can significantly lower the cost of producing styrene. The overall yield to styrene is greater than 90%. Since 1994, Dow has operated a pilot plant at an 18-40 lb/hr capacity27. The Innovative Chemical Co. has developed a catalyst technology to dimerize butadiene to 4- vinylcyclohexene (VCH). VCH is then dehydrogenated to yield ethylbenzene. This innovative technology will have a superior advantage over current commercial routes. Production Consumption Analysis A production consumption analysis (shown in Appendix A) was used to compare the butadiene process to the dehydrogenation process. Taking into consideration raw material costs and assuming that the ethylbenzene was recycled, the dehydrogenated process would produce a profit of $0.03 for every mole of ethylbenzene consumed. For the butadiene process, the net gain of styrene produced is $0.04 for every mole of butadiene consumed. Therefore it was determined that the butadiene process has the potential to obtain a greater profit margin compared to current commercial processes. Styrene Market Analysis Market Growth During the 1996-2001 period world styrene demand grew at an average annual rate of 4.0%. The world styrene demand grew by 5.1% in 2002, and some reports expect continued growth of world styrene demand through 20077,12. The increased growth of styrene was mainly due to the increase in demand for polystyrene. Polystyrene accounts for approximately 61% of styrene consumption. Appendix B shows the end uses of styrene. In addition to polystyrene, other end uses include acrylonitrile, styrene- acrylonitrile, styrene-butadiene latex, and unsaturated polyester resins. The demand for polystyrene has grown and will continue to grow mainly due to: increased demand in China, new home construction in the United States, and population growth. Product Life Cycle As shown in Appendix C, the styrene market is in the mature stage in the US. Other Asian countries, such as China, are in the growth stage. Although new projects to increase capacity in Asian countries are planned, China will continue to be a net importer of styrene within the next five years4-10. See Figure B-2 (Appendix B) for the styrene capacity for major regions in 2001 and 2006. 2
  4. 4. Price Histories and Trends Styrene prices have increased steadily over the last few years. From the price plot of styrene presented in Appendix D, the projected price of styrene one year from now is approximately $0.34 and five years from now about $0.37. In addition, the cost of butadiene has been lower than that of benzene and ethylene and is projected to be so for the next several years. The low cost will allow for a competitive advantage by offering a lower price and a higher quality good. Current Producers in the Styrene Market There are approximately 5,000 producers and users of styrene today. The ten largest world producers and their annual capacity are presented in Table 1. The top 10 producers of styrene have the ability to produce more that 50% of the world consumption. Table 1. Ten Largest World Producers of Styrene 22 in Millions of Pounds Per Year Producer Technology Annual Capacity Dow Chemical (United States) Dow dehydrogenation 4,903 Royal Dutch Shell Group (United Kingdom) PO/SM 4,890 BASF (Germany) PO/SM and dehydrogenation 3,578 Lyondell Chemical (United States) PO/SM 2,800 TotalFirmElf (France) 2,586 NOVA Chemicals (Canada) Fina-Badger dehydrogenation 2,271 BP (United Kingdom) Dehydrogenation 1,770 Sterling (United Kingdom) Monsanto dehydrogenation 1,702 EriChem (Italy) 1,455 Idermitsu (Japan) 1,246 Total 27,202 Market Opportunities, Positioning, Risk and Environmental Concerns Opportunities Since the styrene industry is currently reaching its production capacity, the demand for styrene is high and the price of styrene is growing. This shows great potential for new members to enter the styrene market. In addition, the need for higher quality styrene has arisen and the industry is moving forward with development of better catalyst and more efficient processes. Analysis of the current technology versus the advanced use of butadiene as a raw material shows that a there is a much greater profit margin in the latter case. In addition, the butadiene method is an exothermic process needing less energy which reduces operation cost. Positioning With this new catalyst making the use of butadiene feasible, the Innovative Chemical Company will be able to offer a higher quality product at a lower cost than the industry standard. Future developments that may match our technology will arise but as the demand for the product decreases the use of the product for HYPERCLEARTM will grow. The increased company use will match the predicted slip in demand. Market analysis showed that some of the byproducts formed using the 1-3 butadiene route had some market value. 3
  5. 5. However, as a technology leader the Innovative Chemical Company wanted to refrain from selling byproducts on the open market since a competitive technological edge was not present. Environmental Issues Appendix E contains health and environmental concerns associated with the production of styrene. Raw Material Requirements The raw material requirements for the styrene production unit are presented in Table 2. They include both the initial charge required for startup as well as amounts fed hourly. Table 2: Raw Material Requirements for Styrene Production Unit. Raw Material Initial Charge Amount per hour Amount per year ACN (lb) 401,485 176 1,543,162 Butadiene (mol) 1,524,717 13,356,520,920 Benzene (gal) 1,228,464 228 1,997,552 Inhibitor (lbs) 4 39,212 Catalyst (lb) 23 199,728 Dowtherm (kg) 939,028 939,028 Product Specifications The styrene product will be recovered at a rate of 1.1 billion pounds per year with a purity of 99.91 mol% for use in the production of HYPERCLEARTM. The temperature and pressure of the product will be 90oF and 125 psig. The high purity will minimize the presence of color bodies in the styrene monomer. Design Constraints The design of the styrene unit was constrained by the following items that were considered for each section. Feed Preparation Section 1. Butadiene purity should be very high to simplify the reactor section. Reactor Section Reaction 1: Butadiene to vinylcyclohexene 1. The catalyst is only active between 214°F and 248°F. 2. Butadiene polymerizes at high concentration so an inert carrier should be used in a 3:1 ratio. Reaction 2: Vinylcyclohexene to styrene 1. Vinylcyclohexene must be kept below the explosive limit of 1% by volume. 2. Reactor temperature must remain less than 200 K above the initial feed temperature to avoid burnout, prevent excess side reaction, and avoid deactivating the catalyst. 3. Styrene polymerizes only in the liquid phase. 4. Packed bed rector (PBR) tubes should be small and flow rates fast so the zero-radial- temperature-gradient assumption is accurate in the model. 4
  6. 6. Purification and Recovery Section 1. Since styrene polymerizes in the liquid phase, an inhibitor is used and its concentration should be 30 to 50 ppm. 2. Inhibitor must remain below 290°F to avoid deactivation. 3. Acetonitrile present in refinery return stream must be less than 400 ppm. Overall Environmental constraints 1. Volatile organics in exiting air streams must total less than 25 tons per year. 2. Organics in exiting water streams must be less than 40 ppm. Process Flow Diagram Figure 1 shows the process flow diagram for the styrene monomer plant. 5
  7. 7. V-101 V-102 P-101 A/B P-102 A/B P-103 A/B T-101 E-101 E-102 V-105 P-104 A/B P-105 A/B T-102 E-103 E-104 V-107 P-106 A/B T-103 E-105 Acetonitrile Crude C4 Acetonitrile Recycle Crude C4 Extractive Main Main Main Washer Main Washer Acetonitrile Crude Crude Crude Crude Crude Extractive Rectifier Storage Storage Feed Pump Pump Feed Pump Distillation Washer Washer Reflux Drum Reflux Pump Recovery Recovery Tower Tower Tower Reflux Distillation Condenser Tank Tank Main Washer Condenser Reboiler Pump Tower Condenser Reboiler Reflux Drum Pump Rectifier E-106 P-107 V-106 E-107 442595 Rectifier Rectifier Rectifier Recycle 97.5 7.98 Reboiler Reflux Reflux Cooler Pump Drum 176 cw 22 90.0 E-103 9.17 To Recover/ T-102 Purification 176 90.9 E-101 457555 Q = -195236 21 Section fp 95.1 1 2.37 T-101 4.2 V-107 LIC 1 1230118 1230118 Acetonitrile Feed 3 229.5 230.2 16 2.37 Q = -386186 19 4.0 1 V-105 LIC P-106 18 37 FIC LIC 14958 606087 10 11 2 12 139.8 5 7 9 90.0 V-101 P-104 A/B 3.18 9.17 FIC P-102 A/B E-104 LIC P-101 A/B 55 15 lps 20 30 2 E-102 LIC 606087 Q =196177 55 Crude Feed 4 90.3 4.00 lps 13 15 LIC Q = 357105 P-105 A/B 163668 99.7 5.94 V-102 6 8 P-103 A/B fp 26 E-105 KEY To Reactor Section T-103 Flow Rate, lb/hr 1378649 Q =-169501 25 1 184.6 Temperature, oF 4.0 V-106 I-41 Pressure, atm 23 Q Duty (MJ/hr) P-107 A/B 17 10 FIC cw Cooling Water mps Medium Pressure Steam 718259 249.1 4.0 hps High Pressure Steam E-106 LIC fp Free Propane 20 cw mps E-107 24 27 28 1229941 ICC - Styrene Plant 230.0 Q =236121 Drawn by Team 8_ Date ________ 2.57 Q = -36114.7 Checked by ________ Date ________ Approved by ________ Date ________ Drawing No. ____1___Revision 0 31 Figure 1a: Process Flow Diagram for Styrene Monomer Plant (Feed Preparation Section) 6
  8. 8. P 108 A/B E-108 R-101 E-119 P 109 A/B E-120 R-102 E-121 R-103 P 110 A/B E-122 R-104 P 112 A/B E-123 R-105 P-113 A/B T-104 Benzene CSTR Butadiene CSTR CSTR CSTR Butadiene CSTR Butadiene CSTR CSTR Butadiene CSTR CSTR Butadiene CSTR Butadiene Feed Pump Feed Isothermal Coolant Feed Heat Isothermal Heat Isothermal Effluent Heat Isothermal Effluent Heat Isothermal Effluent Recovery Cooler CSTR Condenser Pump Exchanger CSTR Exchanger CSTR Pump 1 Exchanger CSTR Pump 3 Exchanger CSTR Pump 4 Column V-103 V-110 P-116 A/B T-105 E-112 E-111 V-113 E-110 E-109 P-114 A/B R-206 E-120 C-101 C-102 C-103 C-104 E-114 P 111 A/B V-111 V-112 Benzene Butadiene Butadiene Benzene Benzene Benzene Benzene Butadiene Butadiene Benzene Packed PBR Air Air Air Air PBR Feed CSTR Catalyst Catalyst Feed Tank Reflux Reflux Recovery Reboiler Condenser Reflux Reboiler Condenser Reflux Bed Dowtherm Comp. 1 Comp. 2 Comp. 3 Comp. 4Heater Effluent Slurry Settling Drum Pump Tower Drum Pump Reactor Exchanger Pump 2 Tank Tank 662409 248 163667 11.98 99.8 5.9 Butadiene Feed E-108 cw From Feed Prep. 662409 36 37 V-111 248 662409 26 11.98 248 35 662409 Q =-2208 11.98 248 662409 V-103 11.98 248 P-109 A/B LIC 11.98 39 40 LIC LIC 34 38 43 LIC 42 46 E-119 45 49 LIC cw E-120 41 44 48 P-110 A/B E-121 Q = -74293 R-101 47 E-122 184 P-111 A/B P-112 A/B 33 498513 R-102 R-103 50 77 P-113 A/B E-123 293.1 1.0 Q = -19764 cw R-104 5.94 Q = -7838 cw LIC V-112 Q = -3928 cw R-105 32 64 Q = -2284 cw Benzene Feed P-108 A/B 63 12331 1856 hps 163.7 154.5 9.0 56 7.98 E-120 54 58 67 4671318 cw 620.3 cw To Recovery 1.50 E-109 488037 T-104 319.5 Section P-120 6.96 Dowtherm Q = -15846 4671323 662408 1 620.3 248 52 V-110 LIC Q =-793613 1.50 9.00 62 76 74 75 E-111 cw P-116 A/B 51 E-114 Styrene Product to Recovery Section 6 FIC T-105 69 Q =400803 R-106 Q =-166830 60 1 658418 V-113 LIC 4500943 332.6 4500943 91 95 315.6 LIC 77.0 2.93 E-110 6.96 14 1.00 68 29 C-101 mps P-114 A/B 92 96 99 53 55 57 59 20 FIC Q = 54516 66 C-102 8341 248.8 170380 Air 93 97 7.98 LIC 309.3 E-112 1.91 90 30 89 C-103 85 hps 94 61 65 98 From Recovery Section Q =164626 C-104 Figure 1b: Process Flow Diagram for Styrene Monomer Plant (Reactor Section) 7
  9. 9. E-115 V-104 V-109 T-106 E-116 E-117 V-108 P-118 A/B P-119 A/B E-113 P-115 A/B P-120 E-119 V-110 E-118 PBR Effluent Decanter Inhibitor Styrene Styrene Styrene Styrene Styrene Inhibitor Crude C4 Crude Steam Jet Steam Jet Water/ Styrene Cooler Tank Recovery Condenser Reboiler Reflux Product Pump Cooler Recovery Ejector Ejector Air Product Tower Drum Pump Pump Condenser Flash Cooler 4464062 204 1.09 Air To The Atmosphere hps To Atmosphere V-110 78 P-120 To Water Treatment 4671318 204.0 cw 1.09 4671318 V-104 E-116 620.3 1.50 E-119 8341 248.8 Q =-46465 cw T-106 1 7.98 77 134826 V-108 LIC fp 204.0 1.00 76 85 79 81 P-117 A/B E-115 31 Feed From Reactor Section Q =-526061 FIC VCH & Benzene To Reactor Section 84 126484 90.0 8.51 LIC E-117 cw 70 P-118 A/B 72430 mps 86 87 204.0 83 88 1.09 E-118 Q =50996 Q =-10597 Styrene Product 80 V-109 To Water Treatment P-119 A/B Inhibitor 442595 97.5 7.98 444451 22 90.0 9.19 Waste From Feed Prep cw 1856 71 72 73 154.5 70 7.98 E-113 P-306 A/B Q =-1522 To Refinery 67 Waste From Reactor Section Figure 1c: Process Flow Diagram for Styrene Monomer Plant (Recovery and Purification Section) 8
  10. 10. Table 3a: Input/Output Stream Table for PFD Input Streams Output streams Stream No. 1 2 32 66 73 78 80 88 Name Acetonitrile Crude C4 Benzene Feed Air feed Refinery Return Non-condensables Waste Water Stryene Product - - Overall - - Molar flow lbmol/h 4.29 10,848.14 2.92 156,007.30 7,859.69 154,069.31 3,986.11 1,214.39 Mass flow lb/h 176.16 606,088.00 228.03 4,500,943.00 444,451.00 4,464,061.50 72,430.17 126,483.77 Temp F 90.00 90.00 77.00 77.00 90.00 204.00 204.00 90.00 Pres atm 9.17 9.17 1.00 1.00 9.19 1.09 1.09 8.51 Vapor mole fraction 0.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 Enth MJ/h 73.83 -79,976.00 65.52 -474.18 -201,220.00 -250,310.00 -506,230.00 59,126.00 Tc F 522.23 296.84 552.02 -223.29 293.86 -218.96 705.47 705.16 Pc atm 47.70 39.88 48.31 35.57 38.92 36.29 217.86 39.50 Std. sp gr. wtr = 1 0.79 0.60 0.89 0.87 0.60 0.86 1.00 0.91 Std. sp gr. air = 1 1.42 1.93 2.70 1.00 1.95 1.00 0.63 3.60 Degree API 48.25 103.02 28.38 31.93 106.28 33.22 10.05 23.72 Average mol wt 41.05 55.87 78.11 28.85 56.55 28.97 18.17 104.15 Actual dens kg/m3 771.68 581.48 873.01 1.18 573.43 1.05 959.44 894.06 Actual vol m3/h 0.10 472.79 0.12 1,730,755.91 351.57 1,936,934.15 34.24 64.17 Std liq m3/h 0.10 456.06 0.12 2,360.10 339.08 2,359.31 32.90 62.99 Std vap 60F m3/h 46.11 116,570.14 31.37 1,676,397.98 84,457.43 1,655,573.09 42,833.32 13,049.35 Total lb/h 176.16 606,088.00 228.03 4,500,943.00 444,451.00 4,464,061.50 72,430.17 126,483.77 Flowrates in lb/h 1-3-Butadiene 0 181,826 0 0 19,785 0 0 0 I-Butene 0 181,826 0 0 181,826 0 0 0 1-Butene 0 121,218 0 0 121,217 0 0 0 N-Butane 0 66,670 0 0 66,670 0 0 0 I-Butane 0 54,548 0 0 54,548 0 0 0 Acetonitrile 176 0 0 0 176 0 0 0 Vinylcyclohexene 0 0 0 0 0 77 76 83 Benzene 0 0 228 0 228 0 0 0 Styrene 0 0 0 0 0 664 674 126,400 Oxygen 0 0 0 1,048,336 0 914,023 0 0 Water 0 0 0 0 0 1,687 71,681 0 Nitrogen 0 0 0 3,452,607 0 3,452,607 0 0 Carbon Dioxide 0 0 0 0 0 95,004 0 0 9
  11. 11. Table 3b: Stream Tables for PFD shown in Figure 1 Stream No. 1 2 3 4 5 6 7 8 Name Acetonitrile Crude C4 3 - - Overall - - Molar flow lbmol/h 4.29 10,848.14 4.29 10,848.14 4.29 10,848.14 4.29 10,848.14 Mass flow lb/h 176.16 606,088.00 176.16 606,088.00 176.16 606,088.00 176.16 606,088.00 Temp F 90.00 90.00 90.76 90.14 90.74 90.25 90.85 90.27 Pres atm 9.17 9.17 2.37 4.00 3.39 5.02 2.37 4.00 Vapor mole fraction 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Enth MJ/h 73.83 -79,976.00 73.83 -79,976.00 73.84 -79,927.00 73.84 -79,927.00 Tc F 522.23 296.84 522.23 296.84 522.23 296.84 522.23 296.84 Pc atm 47.70 39.88 47.70 39.88 47.70 39.88 47.70 39.88 Std. sp gr. wtr = 1 0.79 0.60 0.79 0.60 0.79 0.60 0.79 0.60 Std. sp gr. air = 1 1.42 1.93 1.42 1.93 1.42 1.93 1.42 1.93 Degree API 48.25 103.02 48.25 103.02 48.25 103.02 48.25 103.02 Average mol wt 41.05 55.87 41.05 55.87 41.05 55.87 41.05 55.87 Actual dens kg/m3 771.68 581.48 771.23 581.37 771.24 581.30 771.17 581.28 Actual vol m3/h 0.10 472.79 0.10 472.87 0.10 472.94 0.10 472.95 Std liq m3/h 0.10 456.06 0.10 456.06 0.10 456.06 0.10 456.06 Std vap 60F m3/h 46.11 116,570.14 46.11 116,570.14 46.11 116,570.14 46.11 116,570.14 Total lb/h 176.16 606,088.00 176.16 606,088.00 176.16 606,088.00 176.16 606,088.00 Flowrates in lb/h 1-3-Butadiene 0 181,826 0 181,826 0 181,826 0 181,826 I-Butene 0 181,826 0 181,826 0 181,826 0 181,826 1-Butene 0 121,218 0 121,218 0 121,218 0 121,218 N-Butane 0 66,670 0 66,670 0 66,670 0 66,670 I-Butane 0 54,548 0 54,548 0 54,548 0 54,548 Acetonitrile 176 0 176 0 176 0 176 0 Vinylcyclohexene 0 0 0 0 0 0 0 0 Benzene 0 0 0 0 0 0 0 0 Styrene 0 0 0 0 0 0 0 0 Oxygen 0 0 0 0 0 0 0 0 Water 0 0 0 0 0 0 0 0 Nitrogen 0 0 0 0 0 0 0 0 Carbon Dioxide 0 0 0 0 0 0 0 0 10
  12. 12. Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d) Stream No. 9 10 11 12 13 15 16 17 Name Cut 1 - - Overall - - Molar flow lbmol/h 29,953.81 29,953.81 29,953.81 8,180.69 32,621.25 32,621.25 8,180.69 32,621.25 Mass flow lb/h 1,230,117.38 1,230,117.38 1,230,117.38 457,555.41 1,378,649.38 1,378,649.38 457,555.41 1,378,649.50 Temp F 229.47 230.12 230.17 94.96 184.54 184.57 95.08 184.59 Pres atm 2.37 5.02 4.00 4.00 4.00 5.02 5.22 4.00 Vapor mole fraction 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Enth MJ/h 630,190.00 630,410.00 630,410.00 -196,790.00 718,190.00 718,280.00 -196,740.00 718,280.00 Tc F 521.96 521.96 521.96 300.34 497.27 497.27 300.34 497.27 Pc atm 47.66 47.66 47.66 38.35 45.45 45.45 38.35 45.45 Std. sp gr. wtr = 1 0.79 0.79 0.79 0.60 0.76 0.76 0.60 0.76 Std. sp gr. air = 1 1.42 1.42 1.42 1.93 1.46 1.46 1.93 1.46 Degree API 48.33 48.33 48.33 104.66 53.68 53.68 104.66 53.68 Average mol wt 41.07 41.07 41.07 55.93 42.26 42.26 55.93 42.26 Actual dens kg/m3 552.40 681.90 681.86 573.98 684.28 684.26 573.89 673.50 Actual vol m3/h 1,010.08 818.26 818.31 361.59 913.87 913.90 361.64 928.50 Std liq m3/h 709.75 709.75 709.75 346.70 819.11 819.11 346.70 819.11 Std vap 60F m3/h 321,872.75 321,872.75 321,872.75 87,906.78 350,536.14 350,536.14 87,906.78 350,536.17 Total lb/h 1,230,117.38 1,230,117.38 1,230,117.38 457,555.41 1,378,649.38 1,378,649.38 457,555.41 1,378,649.50 Flowrates in lb/h 1-3-Butadiene 7 7 7 18,184 163,648 163,648 18,184 163,648 I-Butene 107 107 107 181,933 0 0 181,933 0 1-Butene 121 121 121 121,334 5 5 121,334 5 N-Butane 1,228 1,228 1,228 67,897 0 0 67,897 0 I-Butane 1 1 1 54,549 0 0 54,549 0 Acetonitrile 1,228,654 1,228,654 1,228,654 13,658 1,214,996 1,214,996 13,658 1,214,996 Vinylcyclohexene 0 0 0 0 0 0 0 0 Benzene 0 0 0 0 0 0 0 0 Styrene 0 0 0 0 0 0 0 0 Oxygen 0 0 0 0 0 0 0 0 Water 0 0 0 0 0 0 0 0 Nitrogen 0 0 0 0 0 0 0 0 Carbon Dioxide 0 0 0 0 0 0 0 0 11
  13. 13. Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d) Stream No. 18 19 20 21 22 23 24 25 Name - - Overall - - Molar flow lbmol/h 8,180.69 7,826.62 354.03 7,826.62 7,826.62 3,025.80 29,595.49 3,025.80 Mass flow lb/h 457,555.41 442,595.28 14,957.70 442,595.28 442,595.28 163,667.81 1,214,983.50 163,667.81 Temp F 95.11 97.01 147.06 97.53 97.55 99.45 271.03 99.61 Pres atm 4.20 4.20 4.20 9.00 7.98 4.00 4.00 6.96 Vapor mole fraction 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Enth MJ/h -196,740.00 -200,580.00 4,773.10 -200,410.00 -200,410.00 123,440.00 661,460.00 123,480.00 Tc F 300.34 293.71 500.19 293.71 293.71 306.01 522.23 306.01 Pc atm 38.35 38.90 44.68 38.90 38.90 42.70 47.70 42.70 Std. sp gr. wtr = 1 0.60 0.60 0.76 0.60 0.60 0.63 0.79 0.63 Std. sp gr. air = 1 1.93 1.95 1.46 1.95 1.95 1.87 1.42 1.87 Degree API 104.66 106.36 54.23 106.36 106.36 93.94 48.25 93.94 Average mol wt 55.93 56.55 42.25 56.55 56.55 54.09 41.05 54.09 Actual dens kg/m3 573.87 568.12 708.89 567.73 567.72 598.21 653.03 598.09 Actual vol m3/h 361.66 353.38 9.57 353.61 353.62 124.10 843.92 124.12 Std liq m3/h 346.70 337.78 8.91 337.78 337.78 118.38 700.73 118.38 Std vap 60F m3/h 87,906.78 84,102.00 3,804.26 84,102.00 84,102.00 32,514.17 318,022.37 32,514.17 Total lb/h 457,555.41 442,595.28 14,957.70 442,595.28 442,595.28 163,667.81 1,214,983.50 163,667.81 Flowrates in lb/h 1-3-Butadiene 18,184 18,176 7 18,176 18,176 163,650 0 163,650 I-Butene 181,933 181,826 107 181,826 181,826 0 0 0 1-Butene 121,334 121,212 121 121,212 121,212 5 0 5 N-Butane 67,897 66,670 1,228 66,670 66,670 0 0 0 I-Butane 54,549 54,548 1 54,548 54,548 0 0 0 Acetonitrile 13,658 164 13,494 164 164 13 1,214,984 13 Vinylcyclohexene 0 0 0 0 0 0 0 0 Benzene 0 0 0 0 0 0 0 0 Styrene 0 0 0 0 0 0 0 0 Oxygen 0 0 0 0 0 0 0 0 Water 0 0 0 0 0 0 0 0 Nitrogen 0 0 0 0 0 0 0 0 Carbon Dioxide 0 0 0 0 0 0 0 0 12
  14. 14. Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d) Stream No. 26 27 28 29 30 31 32 33 Name Benzene Feed - - Overall - - Molar flow lbmol/h 3,025.80 29,595.49 29,595.49 78,003.65 354.03 29,949.52 2.92 2.92 Mass flow lb/h 163,667.81 1,214,983.50 1,214,983.50 2,250,471.50 14,957.70 1,229,941.25 228.03 228.03 Temp F 99.63 249.15 231.00 77.00 139.78 230.02 77.00 77.19 Pres atm 5.94 2.98 2.57 1.00 3.18 2.57 1.00 6.96 Vapor mole fraction 0.00 0.05 0.00 1.00 0.02 0.00 0.00 0.00 Enth MJ/h 123,480.00 661,460.00 625,340.00 -237.09 4,773.10 630,110.00 65.52 65.59 Tc F 306.01 522.23 522.23 -223.29 500.19 521.96 552.02 552.02 Pc atm 42.70 47.70 47.70 35.57 44.68 47.66 48.31 48.31 Std. sp gr. wtr = 1 0.63 0.79 0.79 0.87 0.76 0.79 0.89 0.89 Std. sp gr. air = 1 1.87 1.42 1.42 1.00 1.46 1.42 2.70 2.70 Degree API 93.94 48.25 48.25 31.93 54.23 48.33 28.38 28.38 Average mol wt 54.09 41.05 41.05 28.85 42.25 41.07 78.11 78.11 Actual dens kg/m3 598.08 75.28 681.71 1.18 181.37 681.97 873.01 872.90 Actual vol m3/h 124.13 7,320.69 808.41 865,377.95 37.41 818.06 0.12 0.12 Std liq m3/h 118.38 700.73 700.73 1,180.05 8.91 709.65 0.12 0.12 Std vap 60F m3/h 32,514.17 318,022.37 318,022.37 838,198.99 3,804.26 321,826.65 31.37 31.37 Total lb/h 163,667.81 1,214,983.50 1,214,983.50 2,250,471.50 14,957.70 1,229,941.25 228.03 228.03 Flowrates in lb/h 1-3-Butadiene 163,650 0 0 0 7 7 0 0 I-Butene 0 0 0 0 107 107 0 0 1-Butene 5 0 0 0 121 121 0 0 N-Butane 0 0 0 0 1,228 1,228 0 0 I-Butane 0 0 0 0 1 1 0 0 Acetonitrile 13 1,214,984 1,214,984 0 13,494 1,228,477 0 0 Vinylcyclohexene 0 0 0 0 0 0 0 0 Benzene 0 0 0 0 0 0 228 228 Styrene 0 0 0 0 0 0 0 0 Oxygen 0 0 0 524,168 0 0 0 0 Water 0 0 0 0 0 0 0 0 Nitrogen 0 0 0 1,726,304 0 0 0 0 Carbon Dioxide 0 0 0 0 0 0 0 0 13
  15. 15. Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d) Stream No. 34 35 36 37 38 39 40 41 Name Cut 2 - - Overall - - Molar flow lbmol/h 2.92 9,464.51 9,464.51 9,464.51 8,435.12 8,435.12 8,435.12 8,160.72 Mass flow lb/h 228.03 662,410.00 662,410.00 662,410.00 662,409.00 662,409.00 662,409.00 662,408.13 Temp F 77.29 206.77 252.34 248.00 248.00 248.09 248.12 248.00 Pres atm 5.94 5.94 12.38 11.98 11.98 13.00 11.98 11.98 Vapor mole fraction 0.00 0.20 0.01 0.00 0.00 0.00 0.00 0.00 Enth MJ/h 65.59 327,310.00 327,600.00 325,390.00 251,100.00 251,140.00 251,140.00 231,370.00 Tc F 552.02 476.90 476.90 476.90 536.10 536.10 536.10 552.46 Pc atm 48.31 49.11 49.11 49.11 48.70 48.70 48.70 47.96 Std. sp gr. wtr = 1 0.89 0.80 0.80 0.80 0.85 0.85 0.85 0.86 Std. sp gr. air = 1 2.70 2.42 2.42 2.42 2.71 2.71 2.71 2.80 Degree API 28.38 45.48 45.48 45.48 36.00 36.00 36.00 33.48 Average mol wt 78.11 69.99 69.99 69.99 78.53 78.53 78.53 81.17 Actual dens kg/m3 872.85 70.76 563.14 651.45 718.02 717.95 717.92 738.13 Actual vol m3/h 0.12 4,246.01 533.55 461.22 418.46 418.50 418.52 407.06 Std liq m3/h 0.12 376.15 376.15 376.15 356.00 356.00 356.00 350.63 Std vap 60F m3/h 31.37 101,702.24 101,702.24 101,702.24 90,640.78 90,640.78 90,640.78 87,692.11 Total lb/h 228.03 662,410.00 662,410.00 662,410.00 662,409.00 662,409.00 662,409.00 662,408.13 Flowrates in lb/h 1-3-Butadiene 0 172,737 172,737 172,737 61,374 61,374 61,374 31,687 I-Butene 0 0 0 0 0 0 0 0 1-Butene 0 33 33 33 33 33 33 33 N-Butane 0 0 0 0 0 0 0 0 I-Butane 0 0 0 0 0 0 0 0 Acetonitrile 0 209 209 209 209 209 209 209 Vinylcyclohexene 0 43 43 43 111,405 111,405 111,405 141,091 Benzene 228 489,388 489,388 489,388 489,388 489,388 489,388 489,388 Styrene 0 0 0 0 0 0 0 0 Oxygen 0 0 0 0 0 0 0 0 Water 0 0 0 0 0 0 0 0 Nitrogen 0 0 0 0 0 0 0 0 Carbon Dioxide 0 0 0 0 0 0 0 0 14
  16. 16. Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d) Stream No. 42 43 44 45 46 47 48 49 Name - - Overall - - Molar flow lbmol/h 8,160.72 8,160.72 8,052.11 8,052.11 8,052.11 7,997.95 7,997.95 7,997.95 Mass flow lb/h 662,408.13 662,408.13 662,408.06 662,408.06 662,408.06 662,408.00 662,408.00 662,408.00 Temp F 248.08 248.12 248.00 248.08 248.12 248.00 248.08 248.12 Pres atm 13.00 11.98 11.98 13.00 11.98 11.98 13.00 11.98 Vapor mole fraction 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Enth MJ/h 231,420.00 231,420.00 223,580.00 223,620.00 223,620.00 219,690.00 219,730.00 219,730.00 Tc F 552.46 552.46 559.01 559.01 559.01 562.29 562.29 562.29 Pc atm 47.96 47.96 47.58 47.58 47.58 47.38 47.38 47.38 Std. sp gr. wtr = 1 0.86 0.86 0.86 0.86 0.86 0.87 0.87 0.87 Std. sp gr. air = 1 2.80 2.80 2.84 2.84 2.84 2.86 2.86 2.86 Degree API 33.48 33.48 32.48 32.48 32.48 31.98 31.98 31.98 Average mol wt 81.17 81.17 82.27 82.27 82.27 82.82 82.82 82.82 Actual dens kg/m3 738.07 738.04 746.40 746.35 746.32 750.60 750.55 750.52 Actual vol m3/h 407.09 407.11 402.55 402.58 402.59 400.30 400.33 400.34 Std liq m3/h 350.63 350.63 348.50 348.50 348.50 347.44 347.44 347.44 Std vap 60F m3/h 87,692.11 87,692.11 86,525.06 86,525.06 86,525.06 85,943.02 85,943.02 85,943.02 Total lb/h 662,408.13 662,408.13 662,408.06 662,408.06 662,408.06 662,408.00 662,408.00 662,408.00 Flowrates in lb/h 1-3-Butadiene 31,687 31,687 19,938 19,938 19,938 14,078 14,078 14,078 I-Butene 0 0 0 0 0 0 0 0 1-Butene 33 33 33 33 33 33 33 33 N-Butane 0 0 0 0 0 0 0 0 I-Butane 0 0 0 0 0 0 0 0 Acetonitrile 209 209 209 209 209 209 209 209 Vinylcyclohexene 141,091 141,091 152,841 152,841 152,841 158,700 158,700 158,700 Benzene 489,388 489,388 489,388 489,388 489,388 489,388 489,388 489,388 Styrene 0 0 0 0 0 0 0 0 Oxygen 0 0 0 0 0 0 0 0 Water 0 0 0 0 0 0 0 0 Nitrogen 0 0 0 0 0 0 0 0 Carbon Dioxide 0 0 0 0 0 0 0 0 15
  17. 17. Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d) Stream No. 50 51 52 53 54 55 56 57 58 Name - - Overall - - Molar flow lbmol/h 7,966.69 7,966.69 219.80 7,746.89 219.80 7,746.89 186.72 7,824.18 33.08 Mass flow lb/h 662,408.00 662,408.00 12,331.51 650,077.00 12,331.51 650,077.00 10,475.83 658,418.25 1,855.68 Temp F 248.00 248.13 163.70 356.63 163.70 344.99 163.70 345.48 163.70 Pres atm 11.98 9.00 9.00 9.00 9.00 7.98 9.00 7.98 9.00 Vapor mole fraction 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.04 0.00 Enth MJ/h 217,450.00 217,450.00 9,034.40 247,090.00 9,034.40 247,090.00 7,674.90 248,640.00 1,359.50 Tc F 564.18 564.18 332.45 569.44 332.45 569.44 332.45 570.09 332.45 Pc atm 47.25 47.25 44.24 46.93 44.24 46.93 44.24 46.85 44.24 Std. sp gr. wtr = 1 0.87 0.87 0.65 0.87 0.65 0.87 0.65 0.87 0.65 Std. sp gr. air = 1 2.87 2.87 1.94 2.90 1.94 2.90 1.94 2.91 1.94 Degree API 31.69 31.69 85.58 30.67 85.58 30.67 85.58 30.75 85.58 Average mol wt 83.15 83.15 56.10 83.91 56.10 83.91 56.10 84.15 56.10 Actual dens kg/m3 753.04 752.95 570.55 684.70 570.55 265.91 570.55 294.87 570.55 Actual vol m3/h 399.00 399.05 9.80 430.66 9.80 1,108.90 8.33 1,012.83 1.48 Std liq m3/h 346.83 346.83 8.59 338.24 8.59 338.24 7.30 342.77 1.29 Std vap 60F m3/h 85,607.15 85,607.15 2,361.90 83,245.31 2,361.90 83,245.31 2,006.47 84,075.75 355.43 Total lb/h 662,408.00 662,408.00 12,331.51 650,077.00 12,331.51 650,077.00 10,475.83 658,418.25 1,855.68 Flowrates in lb/h 1-3-Butadiene 10,696 10,696 10,696 1 10,696 1 9,086 1 1,610 I-Butene 0 0 0 0 0 0 0 0 0 1-Butene 33 33 33 0 33 0 28 0 5 N-Butane 0 0 0 0 0 0 0 0 0 I-Butane 0 0 0 0 0 0 0 0 0 Acetonitrile 209 209 84 125 84 125 71 125 13 Vinylcyclohexene 162,082 162,082 1 162,080 1 162,080 1 170,360 0 Benzene 489,388 489,388 1,518 487,871 1,518 487,871 1,289 487,919 228 Styrene 0 0 0 0 0 0 0 13 0 Oxygen 0 0 0 0 0 0 0 0 0 Water 0 0 0 0 0 0 0 0 0 Nitrogen 0 0 0 0 0 0 0 0 0 Carbon Dioxide 0 0 0 0 0 0 0 0 0 16
  18. 18. Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d) Stream No. 59 60 61 62 63 64 65 66 67 Name Cut 3 Air feed - - Overall - - Molar flow lbmol/h 7,824.17 6,249.07 1,575.11 6,249.07 6,435.79 6,435.79 1,575.11 156,007.30 33.08 Mass flow lb/h 658,418.25 488,038.00 170,380.45 488,038.00 498,514.00 498,514.00 170,380.45 4,500,943.00 1,855.68 Temp F 332.67 319.47 426.31 319.47 304.62 293.11 309.27 77.00 154.47 Pres atm 6.96 6.96 6.96 6.96 6.96 5.94 1.91 1.00 7.98 Vapor mole fraction 0.09 0.00 0.00 0.00 0.04 0.08 0.53 1.00 0.04 Enth MJ/h 248,640.00 196,050.00 50,378.00 196,090.00 203,770.00 203,770.00 50,378.00 -474.18 1,359.50 Tc F 570.09 552.02 618.52 552.02 546.43 546.43 618.52 -223.29 332.45 Pc atm 46.85 48.31 33.86 48.31 48.45 48.45 33.86 35.57 44.24 Std. sp gr. wtr = 1 0.87 0.89 0.84 0.89 0.88 0.88 0.84 0.87 0.65 Std. sp gr. air = 1 2.91 2.70 3.74 2.70 2.67 2.67 3.74 1.00 1.94 Degree API 30.75 28.38 37.54 28.38 29.58 29.58 37.54 31.93 85.58 Average mol wt 84.15 78.10 108.17 78.10 77.46 77.46 108.17 28.85 56.10 Actual dens kg/m3 155.38 717.77 625.78 717.77 265.07 146.00 11.66 1.18 264.09 Actual vol m3/h 1,922.14 308.42 123.50 308.42 853.06 1,548.75 6,626.18 1,730,755.91 3.19 Std liq m3/h 342.77 250.36 92.41 250.36 257.65 257.65 92.41 2,360.10 1.29 Std vap 60F m3/h 84,075.75 67,150.22 16,925.52 67,150.22 69,156.69 69,156.69 16,925.52 1,676,397.98 355.43 Total lb/h 658,418.25 488,038.00 170,380.45 488,038.00 498,514.00 498,514.00 170,380.45 4,500,943.00 1,855.68 Flowrates in lb/h 1-3-Butadiene 1 1 0 1 9,087 9,087 0 0 1,610 I-Butene 0 0 0 0 0 0 0 0 0 1-Butene 0 0 0 0 28 28 0 0 5 N-Butane 0 0 0 0 0 0 0 0 0 I-Butane 0 0 0 0 0 0 0 0 0 Acetonitrile 125 125 0 125 196 196 0 0 13 Vinylcyclohexene 170,360 41 170,319 41 43 43 170,319 0 0 Benzene 487,919 487,870 49 487,870 489,160 489,160 49 0 228 Styrene 13 0 13 0 0 0 13 0 0 Oxygen 0 0 0 0 0 0 0 1,048,336 0 Water 0 0 0 0 0 0 0 0 0 Nitrogen 0 0 0 0 0 0 0 3,452,607 0 Carbon Dioxide 0 0 0 0 0 0 0 0 0 17
  19. 19. Table 3b: Stream Tables for PFD shown in Figure 1 (Cont’d) Stream No. 68 69 70 71 72 73 74 75 76 Name Refinery Ret. - - Overall - - Molar flow lbmol/h 78,003.65 156,007.30 7,859.69 7,859.69 7,859.69 7,859.69 157,582.41 157,582.41 159,347.09 Mass flow lb/h 2,250,471.50 4,500,943.00 444,451.00 444,451.00 444,451.00 444,451.00 4,671,323.50 4,671,323.50 4,671,318.00 Temp F 315.63 315.51 97.81 98.10 98.12 90.00 305.66 620.33 620.33 Pres atm 2.93 1.91 7.98 10.62 9.59 9.19 1.91 1.50 1.50 Vapor mole fraction 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 Enth MJ/h 137,600.00 275,200.00 -199,050.00 -198,950.00 -198,950.00 -201,220.00 325,580.00 726,380.00 -67,229.00 Tc F -223.29 -223.29 293.86 293.86 293.86 293.86 -187.20 -187.20 -171.93 Pc atm 35.57 35.57 38.92 38.92 38.92 38.92 60.59 60.59 56.16 Std. sp gr. wtr = 1 0.87 0.87 0.60 0.60 0.60 0.60 0.87 0.87 0.86 Std. sp gr. air = 1 1.00 1.00 1.95 1.95 1.95 1.95 1.02 1.02 1.01 Degree API 31.93 31.93 106.28 106.28 106.28 106.28 32.13 32.13 32.61 Average mol wt 28.85 28.85 56.55 56.55 56.55 56.55 29.64 29.64 29.32 Actual dens kg/m3 2.39 1.56 567.74 567.53 567.51 573.43 1.62 0.90 0.89 Actual vol m3/h 427,376.91 1,311,214.19 355.09 355.22 355.23 351.57 1,307,516.12 2,347,334.06 2,373,527.14 Std liq m3/h 1,180.05 2,360.10 339.08 339.08 339.08 339.08 2,452.51 2,452.51 2,459.72 Std vap 60F m3/h 838,198.99 1,676,397.98 84,457.43 84,457.43 84,457.43 84,457.43 1,693,323.53 1,693,323.53 1,712,286.19 Total lb/h 2,250,471.50 4,500,943.00 444,451.00 444,451.00 444,451.00 444,451.00 4,671,323.50 4,671,323.50 4,671,318.00 Flowrates in lb/h 1-3-Butadiene 0 0 19,785 19,785 19,785 19,785 0 0 0 I-Butene 0 0 181,826 181,826 181,826 181,826 0 0 0 1-Butene 0 0 121,217 121,217 121,217 121,217 0 0 0 N-Butane 0 0 66,670 66,670 66,670 66,670 0 0 0 I-Butane 0 0 54,548 54,548 54,548 54,548 0 0 0 Acetonitrile 0 0 176 176 176 176 0 0 0 Vinylcyclohexene 0 0 0 0 0 0 170,319 170,319 8,516 Benzene 0 0 228 228 228 228 49 49 49 Styrene 0 0 0 0 0 0 13 13 127,752 Oxygen 524,168 1,048,336 0 0 0 0 1,048,336 1,048,336 914,023 Water 0 0 0 0 0 0 0 0 73,368 Nitrogen 1,726,304 3,452,607 0 0 0 0 3,452,607 3,452,607 3,452,607 Carbon Dioxide 0 0 0 0 0 0 0 0 95,004 18

×