Your SlideShare is downloading. ×
0
Data Analysis Technology Assurance Committee New York State Society of CPAs Presented by:  Mudit Gupta, CPA
Notice <ul><li>The Presenter is not a lawyer.  No legal advice is rendered in this presentation.  </li></ul>
Outline <ul><li>Definition </li></ul><ul><li>Stages of Data Analysis </li></ul><ul><li>Key elements of Data Analysis </li>...
Data Analysis - Defined <ul><li>Data Analysis (“DA”) as it pertains to Technology Assurance; is an analytical and problem ...
Stages of Data Analysis <ul><li>Data Acquisition </li></ul><ul><li>Data Processing </li></ul><ul><li>Reporting and Output ...
Data Analysis – Explained Key Elements <ul><li>Size & Nature of Data </li></ul><ul><li>Business & IT Source of Data </li><...
Key Elements Size & Nature of data <ul><li>Size of the data </li></ul><ul><ul><li>Number of records in the dataset </li></...
Key Elements Size & Nature of data <ul><li>Nature of the data </li></ul><ul><ul><li>Field formats </li></ul></ul><ul><ul><...
Key Elements  Business & IT Source of Data <ul><li>Helps in appropriate field definition </li></ul><ul><ul><li>e.g. Trade ...
Key Elements  Business & IT Source of Data <ul><li>Business Source ~ Functional Data </li></ul><ul><ul><li>e.g. Trade reco...
Key Elements Problem Logic <ul><li>Filtration criteria </li></ul><ul><li>Key fields </li></ul><ul><li>Summarization criter...
Key Elements Expected Results <ul><li>Sample client output </li></ul><ul><li>Knowledge of granularities, classifications a...
Benefits & Uses of DA <ul><li>Benefits </li></ul><ul><ul><li>Ability to process large sets of data efficiently and accurat...
DA Tools <ul><li>Off the shelf </li></ul><ul><ul><li>ACL ( www.acl.com ) </li></ul></ul><ul><ul><li>IDEA ( www.audimation....
Case Study <ul><li>Run through a market value reconciliation using SQL </li></ul><ul><ul><li>Obtaining Source Files </li><...
Useful Links <ul><li>http://en.wikipedia.org/wiki/Data_analysis </li></ul><ul><li>http://www.indatacorp.com/Products/eDisc...
<ul><li>Questions? </li></ul>
About the Presenter <ul><li>Mudit Gupta, CPA  is an Information Systems Auditing Senior Consultant at the Ernst & Young LL...
Upcoming SlideShare
Loading in...5
×

Data Analysis

463

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
463
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
7
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Data Analysis"

  1. 1. Data Analysis Technology Assurance Committee New York State Society of CPAs Presented by: Mudit Gupta, CPA
  2. 2. Notice <ul><li>The Presenter is not a lawyer. No legal advice is rendered in this presentation. </li></ul>
  3. 3. Outline <ul><li>Definition </li></ul><ul><li>Stages of Data Analysis </li></ul><ul><li>Key elements of Data Analysis </li></ul><ul><li>Benefits and Uses of Data Analysis </li></ul><ul><li>Data Analysis Tools </li></ul>
  4. 4. Data Analysis - Defined <ul><li>Data Analysis (“DA”) as it pertains to Technology Assurance; is an analytical and problem solving process to identify and interpret relationships amongst variables. It is used primarily to analyze data based on pre-defined relationships </li></ul><ul><li>DA is independent of the tool used </li></ul><ul><li>DA needs a specific mindset </li></ul>
  5. 5. Stages of Data Analysis <ul><li>Data Acquisition </li></ul><ul><li>Data Processing </li></ul><ul><li>Reporting and Output </li></ul>
  6. 6. Data Analysis – Explained Key Elements <ul><li>Size & Nature of Data </li></ul><ul><li>Business & IT Source of Data </li></ul><ul><li>Problem Logic </li></ul><ul><li>Expected Results </li></ul>
  7. 7. Key Elements Size & Nature of data <ul><li>Size of the data </li></ul><ul><ul><li>Number of records in the dataset </li></ul></ul><ul><ul><li>Number of fields in each record of the dataset </li></ul></ul><ul><ul><li>Maximum length of a record </li></ul></ul>
  8. 8. Key Elements Size & Nature of data <ul><li>Nature of the data </li></ul><ul><ul><li>Field formats </li></ul></ul><ul><ul><li>Field value limitations </li></ul></ul><ul><ul><li>Default values </li></ul></ul><ul><ul><li>Field reference values </li></ul></ul>
  9. 9. Key Elements Business & IT Source of Data <ul><li>Helps in appropriate field definition </li></ul><ul><ul><li>e.g. Trade Id is defined as alphanumeric </li></ul></ul><ul><ul><li>e.g. Social Security Number is a required field </li></ul></ul><ul><li>Helps in a better mapping to the end result </li></ul><ul><ul><li>Different dimensions of data e.g. account balance by currency, by account, by exchange </li></ul></ul><ul><ul><li>Saves time due to early identification of erroneous source data </li></ul></ul>
  10. 10. Key Elements Business & IT Source of Data <ul><li>Business Source ~ Functional Data </li></ul><ul><ul><li>e.g. Trade reconciliation data is likely to contain trade details, position and account balances. </li></ul></ul><ul><li>IT Source ~ Administrative Data </li></ul><ul><ul><li>e.g. Access Control List (ACL) is likely to contain user information, entitlements and audit trail. </li></ul></ul>
  11. 11. Key Elements Problem Logic <ul><li>Filtration criteria </li></ul><ul><li>Key fields </li></ul><ul><li>Summarization criteria </li></ul><ul><li>Elimination criteria </li></ul><ul><li>External relationships </li></ul>
  12. 12. Key Elements Expected Results <ul><li>Sample client output </li></ul><ul><li>Knowledge of granularities, classifications and presentation </li></ul>
  13. 13. Benefits & Uses of DA <ul><li>Benefits </li></ul><ul><ul><li>Ability to process large sets of data efficiently and accurately </li></ul></ul><ul><li>Uses </li></ul><ul><ul><li>Audit </li></ul></ul><ul><ul><li>Fraud detection (SAS 99) </li></ul></ul><ul><ul><li>Litigation support </li></ul></ul><ul><ul><li>Data Quality </li></ul></ul><ul><ul><li>Computer Science </li></ul></ul><ul><ul><li>Physics </li></ul></ul>
  14. 14. DA Tools <ul><li>Off the shelf </li></ul><ul><ul><li>ACL ( www.acl.com ) </li></ul></ul><ul><ul><li>IDEA ( www.audimation.com ) </li></ul></ul><ul><ul><li>SAS ( www.sas.com ) </li></ul></ul><ul><ul><li>Tableau ( www.tableausoftware.com ) </li></ul></ul><ul><li>Traditional Programming Languages </li></ul><ul><ul><li>SQL ( www.mysql.org , http://msdn2.microsoft.com/en-us/sql/default.aspx ) </li></ul></ul><ul><ul><li>C# ( http://msdn2.microsoft.com/en-us/vcsharp/default.aspx ) </li></ul></ul><ul><ul><li>C++ ( http://msdn2.microsoft.com/en-us/visualc/default.aspx ) </li></ul></ul><ul><li>Desktop Software </li></ul><ul><ul><li>Microsoft Excel ( www.microsoft.com ) </li></ul></ul><ul><ul><li>Microsoft Access ( www.microsoft.com ) </li></ul></ul><ul><li>Helpful support utilities </li></ul><ul><ul><li>Monarch ( http://www.datawatch.com/ ) </li></ul></ul><ul><ul><li>Textpad ( http://www.textpad.com/ ) </li></ul></ul><ul><ul><li>Notepad </li></ul></ul>
  15. 15. Case Study <ul><li>Run through a market value reconciliation using SQL </li></ul><ul><ul><li>Obtaining Source Files </li></ul></ul><ul><ul><li>Loading them in SQL </li></ul></ul><ul><ul><li>Understanding the reconciliation logic </li></ul></ul><ul><ul><li>Re-performing the logic </li></ul></ul><ul><ul><li>Reporting and client discussion </li></ul></ul>
  16. 16. Useful Links <ul><li>http://en.wikipedia.org/wiki/Data_analysis </li></ul><ul><li>http://www.indatacorp.com/Products/eDiscovery/services.aspx </li></ul><ul><li>http://www.ey.com/global/Content.nsf/US/AABS_-_Specialty_Advisory_-_IDS_-_Services </li></ul><ul><li>http://www.ey.com/us/tsrs </li></ul>
  17. 17. <ul><li>Questions? </li></ul>
  18. 18. About the Presenter <ul><li>Mudit Gupta, CPA is an Information Systems Auditing Senior Consultant at the Ernst & Young LLP's Technology & Security Risk Services (TSRS) group in New York. In 2004, Mudit obtained his B.S. in Accounting and Computer Science at Rutgers University. His expertise is in IT audits of Fortune 100 clients. Mudit is a member of the American Institute of Certified Public Accountants and the Technology Assurance Committee at the New York State Society of CPAs. </li></ul>
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×